There is an argument to be made that the market buys bug-filled, inefficient software about as well as it buys pristine software. And one of them is the cheapest software you could make.
It's similar to the "Market for Lemons" story. In short, the market sells as if all goods were high-quality but underhandedly reduces the quality to reduce marginal costs. The buyer cannot differentiate between high and low-quality goods before buying, so the demand for high and low-quality goods is artificially even. The cause is asymmetric information.
This is already true and will become increasingly more true for AI. The user cannot differentiate between sophisticated machine learning applications and a washing machine spin cycle calling itself AI. The AI label itself commands a price premium. The user overpays significantly for a washing machine[0].
It's fundamentally the same thing when a buyer overpays for crap software, thinking it's designed and written by technologists and experts. But IC1-3s write 99% of software, and the 1 QA guy in 99% of tech companies is the sole measure to improve quality beyond "meets acceptance criteria". Occasionally, a flock of interns will perform an "LGTM" incantation in hopes of improving the software, but even that is rarely done.
The dumbest and most obvious of realizations finally dawned on me after trying to build a software startup that was based on quality differentiation. We were sure that a better product would win people over and lead to viral success. It didn’t. Things grew, but so slowly that we ran out of money after a few years before reaching break even.
What I realized is that lower costs, and therefore lower quality, are a competitive advantage in a competitive market. Duh. I’m sure I knew and said that in college and for years before my own startup attempt, but this time I really felt it in my bones. It suddenly made me realize exactly why everything in the market is mediocre, and why high quality things always get worse when they get more popular. Pressure to reduce costs grows with the scale of a product. Duh. People want cheap, so if you sell something people want, someone will make it for less by cutting “costs” (quality). Duh. What companies do is pay the minimum they need in order to stay alive & profitable. I don’t mean it never happens, sometimes people get excited and spend for short bursts, young companies often try to make high quality stuff, but eventually there will be an inevitable slide toward minimal spending.
There’s probably another name for this, it’s not quite the Market for Lemons idea. I don’t think this leads to market collapse, I think it just leads to stable mediocrity everywhere, and that’s what we have.
> What I realized is that lower costs, and therefore lower quality,
This implication is the big question mark. It's often true but it's not at all clear that it's necessarily true. Choosing better languages, frameworks, tools and so on can all help with lowering costs without necessarily lowering quality. I don't think we're anywhere near the bottom of the cost barrel either.
I think the problem is focusing on improving the quality of the end products directly when the quality of the end product for a given cost is downstream of the quality of our tools. We need much better tools.
For instance, why are our languages still obsessed with manipulating pointers and references as a primary mode of operation, just so we can program yet another linked list? Why can't you declare something as a "Set with O(1) insert" and the language or its runtime chooses an implementation? Why isn't direct relational programming more common? I'm not talking programming in verbose SQL, but something more modern with type inference and proper composition, more like LINQ, eg. why can't I do:
let usEmployees = from x in Employees where x.Country == "US";
func byFemale(Query<Employees> q) =>
from x in q where x.Sex == "Female";
let femaleUsEmployees = byFemale(usEmployees);
These abstract over implementation details that we're constantly fiddling with in our end programs, often for little real benefit. Studies have repeatedly shown that humans can write less than 20 lines of correct code per day, so each of those lines should be as expressive and powerful as possible to drive down costs without sacrificing quality.
I consider functional thinking and ability to use list comprehensions/LINQ/lodash/etc. to be fundamental skills in today's software world. The what, not the how!
I had the same realization but with car mechanics. If you drive a beater you want to spend the least possible on maintenance. On the other hand, if the car mechanic cares about cars and their craftsmanship they want to get everything to tip-top shape at high cost. Some other mechanics are trying to scam you and get the most amount of money for the least amount of work. And most people looking for car mechanics want to pay the least amount possible, and don't quite understand if a repair should be expensive or not. This creates a downward pressure on price at the expense of quality and penalizes the mechanics that care about quality.
Luckily for mechanics, the shortage of actual blue collar Hands-On labor is so small, that good mechanics actually can charge more.
The issue is that you have to be able to distinguish a good mechanic from a bad mechanic cuz they all get to charge a lot because of the shortage. Same thing for plumbing, electrical, HVAC, etc etc etc
Here in Atlanta Georgia, we have a ToyoTechs business. They perform maintenance on only Toyota-family automobiles. They have 2 locations, one for large trucks, one for cars, hybrids, and SUV-looking cars. Both are always filled up with customers. Some of whom drive hundreds of miles out of state to bring their vehicles exclusively there, whether the beater is a customized off-roader or a simple econobox with sentimental value.
Why? Because they are on a different incentive structure: non-comissioned payments for employees. They buy OEM parts, give a good warranty, charge fair prices, and they are always busy.
If this computer fad goes away, I'm going to open my own Toyota-only auto shop, trying to emulate them. They have 30 years of lead time on my hypothetical business, but the point stands: when people discover that high quality in this market, they stick to it closely.
I actually disagree. I think that people will pay more for higher quality software, but only if they know the software is higher quality.
It's great to say your software is higher quality, but the question I have is whether or not is is higher quality with the same or similar features, and second, whether the better quality is known to the customers.
It's the same way that I will pay hundreds of dollars for Jetbrains tools each year even though ostensibly VS Code has most of the same features, but the quality of the implementation greatly differs.
If a new company made their IDE better than jetbrains though, it'd be hard to get me to fork over money. Free trials and so on can help spread awareness.
I had the exact same experience trying to build a startup. The thing that always puzzled me was Apple: they've grown into one of the most profitable companies in the world on the basis of high-quality stuff. How did they pull it off?
My wife has a perfume business. She makes really high quality extrait de parfums [1] with expensive materials and great formulations. But the market is flooded with eau de parfums -- which are far more diluted than a extrait -- using cheaper ingredients, selling for about the same price. We've had so many conversations about whether she should dilute everything like the other companies do, but you lose so much of the beauty of the fragrance when you do that. She really doesn't want to go the route of mediocrity, but that does seem to be what the market demands.
> But the market is flooded with eau de parfums -- which are far more diluted than a extrait -- using cheaper ingredients, selling for about the same price.
Has she tried raising prices? To signal that her product is highly quality and thus more expensive than her competition?
I kind of see this in action when I'm comparing products on Amazon. When comparing two products on Amazon that are substantially the same, the cheaper one will have way more reviews. I guess this implies that it has captured the majority of the market.
I think this honestly has more to do with moslty Chinese sellers engaging in review fraud, which is a rampant problem. I'm not saying non-Chinese sellers don't engage in review fraud, but I have noticed a trend that around 98% of fake or fraudulently advertised products are of Chinese origin.
If it was just because it was cheap, we'd also see similar fraud from Mexican or Vietnamese sellers, but I don't really see that.
There's an analogy with evolution. In that case, what survives might be the fittest, but it's not the fittest possible. It's the least fit that can possibly win. Anything else represents an energy expenditure that something else can avoid, and thus outcompete.
> the market sells as if all goods were high-quality
The phrase "high-quality" is doing work here. The implication I'm reading is that poor performance = low quality. However, the applications people are mentioning in this comment section as low performance (Teams, Slack, Jira, etc) all have competitors with much better performance. But if I ask a person to pick between Slack and, say, a a fast IRC client like Weechat... what do you think the average person is going to consider low-quality? It's the one with a terminal-style UI, no video chat, no webhook integrations, and no custom avatars or emojis.
Performance is a feature like everything else. Sometimes, it's a really important feature; the dominance of Internet Explorer was destroyed by Chrome largely because it was so much faster than IE when it was released, and Python devs are quickly migrating to uv/ruff due to the performance improvement. But when you start getting into the territory of "it takes Slack 5 seconds to start up instead of 10ms", you're getting into the realm where very few people care.
You are comparing applications with wildly different features and UI. That's neither an argument for nor against performance as an important quality metric.
How fast you can compile, start and execute some particular code matters. The experience of using a program that performs well if you use it daily matters.
Performance is not just a quantitative issue. It leaks into everything, from architecture to delivery to user experience. Bad performance has expensive secondary effects, because we introduce complexity to patch over it like horizontal scaling, caching or eventual consistency. It limits our ability to make things immediately responsive and reliable at the same time.
> You are comparing applications with wildly different features and UI. That's neither an argument for nor against performance as an important quality metric.
Disagree, the main reason so many apps are using "slow" languages/frameworks is precisely that it allows them to develop way more features way quicker than more efficient and harder languages/frameworks.
> You are comparing applications with wildly different features and UI. That's neither an argument for nor against performance as an important quality metric.
I never said performance wasn't an important quality metric, just that it's not the only quality metric. If a slow program has the features I need and a fast program doesn't, the slow program is going to be "higher quality" in my mind.
> How fast you can compile, start and execute some particular code matters. The experience of using a program that performs well if you use it daily matters.
Like any other feature, whether or not performance is important depends on the user and context. Chrome being faster than IE8 at general browsing (rendering pages, opening tabs) was very noticeable. uv/ruff being faster than pip/poetry is important because of how the tools integrate into performance-sensitive development workflows. Does Slack taking 5-10 seconds to load on startup matter? -- to me not really, because I have it come up on boot and forget about it until my next system update forced reboot. Do I use LibreOffice or Word and Excel, even though LibreOffice is faster? -- I use Word/Excel because I've run into annoying compatibility issues enough times with LO to not bother. LibreOffice could reduce their startup and file load times to 10 picoseconds and I would still use MS Office, because I just want my damn documents to keep the same formatting my colleagues using MS Office set on their Windows computers.
Now of course I would love the best of all worlds; programs to be fast and have all the functionality I want! In reality, though, companies can't afford to build every feature, performance included, and need to pick and choose what's important.
> If a slow program has the features I need and a fast program doesn't, the slow program is going to be "higher quality" in my mind.
That’s irrelevant here, the fully featured product can also be fast. The overwhelming majority of software is slow because the company simply doesn’t care about efficiency. Google actively penalized slow websites and many companies still didn’t make it a priority.
> That’s irrelevant here, the fully featured product can also be fast.
So why is it so rarely the case? If it's so simple, why hasn't anyone recognized that Teams, Zoom, etc are all bloated and slow and made a hyper-optimized, feature-complete competitor, dominating the market?
Software costs money to build, and performance optimization doesn't come for free.
> The overwhelming majority of software is slow because the company simply doesn’t care about efficiency.
Don't care about efficiency at all, or don't consider it as important as other features and functionality?
Not being free upfront isn’t the same thing as expensive.
Zoom’s got 7,412 employees a small team of say 7 employees could make a noticeable difference here and the investment wouldn’t disappear, it would help drive further profits.
> Don't care about efficiency at all
Doesn’t care beyond basic functionality. Obviously they care if something takes an hour to load, but rarely do you see considerations for people running on lower hardware than the kind of machines you see at a major software company etc.
> Zoom’s got 7,412 employees a small team of say 7 employees could make a noticeable difference here
What would those 7 engineers specifically be working on? How did you pick 7? What part of the infrastructure would they be working on, and what kind of performance gains, in which part of the system, would be the result of their work?
What consumers care about is the customer facing aspects of the business. As such you’d benchmark Zoom on various clients/plugins (Windows, Max, Android, iOS) and create a never ending priority list of issues weighted by marketshare.
7 people was roughly chosen to be able to cover the relevant skills while also being a tiny fraction of the workforce. Such efforts run into diminishing returns, but the company is going to keep creating low hanging fruit.
If you're being honest, compare Slack and Teams not with weechat, but with Telegram. Its desktop client (along with other clients) is written by an actually competent team that cares about performance, and it shows. They have enough money to produce a native client written in C++ that has fantastic performance and is high quality overall, but these software behemoths with budgets higher than most countries' GDP somehow never do.
I don't think it's necessarily a market for lemons. That involves information asymmetry.
Sometimes that happens with buggy software, but I think in general, people just want to pay less and don't mind a few bugs in the process. Compare and contrast what you'd have to charge to do a very thorough process with multiple engineers checking every line of code and many hours of rigorous QA.
I once did some software for a small book shop where I lived in Padova, and created it pretty quickly and didn't charge the guy - a friend - much. It wasn't perfect, but I fixed any problems (and there weren't many) as they came up and he was happy with the arrangement. He was patient because he knew he was getting a good deal.
There's likely some, although it depends on the environment. The more users of the system there are, the more there are going to be reviews and people will know that it's kind of buggy. Most people seem more interested in cost or features though, as long as they're not losing hours of work due to bugs.
> the market buys bug-filled, inefficient software about as well as it buys pristine software
In fact, the realization is that the market buy support.
And that includes google and other companies that lack much of human support.
This is the key.
Support is manifested in many ways:
* There is information about it (docs, videos, blogs, ...)
* There is people that help me ('look ma, this is how you use google')
* There is support for the thing I use ('OS, Browser, Formats, ...')
* And for my way of working ('Excel let me do any app there...')
* And finally, actual people (that is the #1 thing that keep alive even the worst ERP on earth). This also includes marketing, sales people, etc. This are signal of having support even if is not exactly the best. If I go to enterprise and only have engineers that will be a bad signal, because well, developers then to be terrible at other stuff and the other stuff is support that matters.
If you have a good product, but there is not support, is dead.
And if you wanna fight a worse product, is smart to reduce the need to support for ('bugs, performance issues, platforms, ...') for YOUR TEAM because you wanna reduce YOUR COSTS but you NEED to add support in other dimensions!
The easiest for a small team, is just add humans (that is the MOST scarce source of support). After that, it need to be creative.
(also, this means you need to communicate your advantages well, because there is people that value some kind of support more than others 'have the code vs propietary' is a good example. A lot prefer the proprietary with support more than the code, I mean)
> This is already true and will become increasingly more true for AI. The user cannot differentiate between sophisticated machine learning applications and a washing machine spin cycle calling itself AI.
The user cannot but a good AI might itself allow the average user to bridge the information asymmetry. So as long as we have a way to select a good AI assistant for ourselves...
> The user cannot but a good AI might itself allow the average user to bridge the information asymmetry. So as long as we have a way to select a good AI assistant for ourselves...
In the end it all hinges on the users ability to assess the quality of the product. Otherwise, the user cannot judge whether an assistant recommends quality products and the assistant has an incentive to suggest poorly (e.g. sellout to product producers).
I have worked for large corporations that have foisted awful HR, expense reporting, time tracking and insurance "portals" that were so awful I had to wonder if anyone writing the checks had ever seen the product. I brought up the point several times that if my team tried to tell a customer that we had their project all done but it was full of as many bugs and UI nightmares as these back office platforms, I would be chastised, demoted and/or fired.
> I had to wonder if anyone writing the checks had ever seen the product
Probably not, and that's like 90% of the issue with enterprise software. Sadly enterprise software products are often sold based mainly on how many boxes they check in the list of features sent to management, not based on the actual quality and usability of the product itself.
What you're describing is Enterprise(tm) software. Some consultancy made tens of millions of dollars building, integrating, and deploying those things. This of course was after they made tens of millions of dollars producing reports exploring how they would build, integrate, and deploy these things and all the various "phases" involved. Then they farmed all the work out to cheap coders overseas and everyone went for golf.
Meanwhile I'm a founder of startup that has gotten from zero to where it is on probably what that consultancy spends every year on catering for meetings.
I used to work at a large company that had a lousy internal system for doing performance evals and self-reviews. The UI was shitty, it was unreliable, it was hard to use, it had security problems, it would go down on the eve of reviews being due, etc. This all stressed me out until someone in management observed, rather pointedly, that the reason for existence of this system is that we are contractually required to have such a system because the rules for government contracts mandate it, and that there was a possibility (and he emphasized the word possibility knowingly) that the managers actully are considering their personal knowledge of your performance rather than this performative documentation when they consider your promotions and comp adjustments. It was like being hit with a zen lightning bolt: this software meets its requirements exactly, and I can stop worrying about it. From that day on I only did the most cursory self-evals and minimal accomplishents, and my career progressed just fine.
You might not think about this as “quality” but it does have the quality of meeting the perverse functional requirements of the situation.
A hallmark of well-designed and well-written software is that it is easy to replace, where bug-ridden spaghetti-bowl monoliths stick around forever because nobody wants to touch them.
Just through pure Darwinism, bad software dominates the population :)
Even if end-users had the data to reasonably tie-break on software quality and performance, as I scroll my list of open applications not a single one of them can be swapped out with another just because it were more performant.
For example: Docker, iterm2, WhatsApp, Notes.app, Postico, Cursor, Calibre.
I'm using all of these for specific reasons, not for reasons so trivial that I can just use the best-performing solution in each niche.
So it seems obviously true that it's more important that software exists to fill my needs in the first place than it pass some performance bar.
I’m surprised in your list because it contains 3 apps that I’ve replaced specifically due to performance issues (docker, iterm and notes). I don’t consider myself particularly performance sensitive (at home) either. So it might be true that the world is even _less_ likely to pay for resource efficiency than we think.
Podman might have some limited API compatibility, but it's a completely different tool. Just off the bat it's not compatible with Skaffold, apparently.
That an alternate tool might perform better is compatible with the claim that performance alone is never the only difference between software.
Podman might be faster than Docker, but since it's a different tool, migrating to it would involve figuring out any number of breakage in my toolchain that doesn't feel worth it to me since performance isn't the only thing that matters.
Except you’ve already swapped terminal for iterm, and orbstack already exists in part because docker left so much room for improvement, especially on the perf front.
I swapped Terminal for iTerm2 because I wanted specific features, not because of performance. iTerm2 is probably slower for all I care.
Another example is that I use oh-my-zsh which is adds weirdly long startup time to a shell session, but it lets me use plugins that add things like git status and kubectl context to my prompt instead of fiddling with that myself.
Is this really tolerance and not just monopolistic companies abusing their market position? I mean workers can't even choose what software they're allowed to use, those choices are made by the executive/management class.
> But IC1-3s write 99% of software, and the 1 QA guy in 99% of tech companies
I'd take this one step further, 99% of the software written isn't being done with performance in mind. Even here in HN, you'll find people that advocate for poor performance because even considering performance has become a faux pas.
That means you L4/5 and beyond engineers are fairly unlikely to have any sort of sense when it comes to performance. Businesses do not prioritize efficient software until their current hardware is incapable of running their current software (and even then, they'll prefer to buy more hardware is possible.)
The used car market is market for lemons because it is difficult to distinguish between a car that has been well maintained and a car close to breaking down. However, the new car market is decidedly not a market for lemons because every car sold is tested by the state, and reviewed by magazines and such. You know exactly what you are buying.
Software is always sold new. Software can increase in quality the same way cars have generally increased in quality over the decades. Creating standards that software must meet before it can be sold. Recalling software that has serious bugs in it. Punishing companies that knowingly sell shoddy software. This is not some deep insight. This is how every other industry operates.
I have that washing machine btw. I saw the AI branding and had a chuckle. I bought it anyway because it was reasonably priced (the washer was $750 at Costco).
You must be referring only to security bugs because you would quickly toss Excel or Photoshop if it were filled with performance and other bugs. Security bugs are a different story because users don't feel the consequences of the problem until they get hacked and even then, they don't know how they got hacked. There are no incentives for developers to actually care.
Developers do care about performance up to a point. If the software looks to be running fine on a majority of computers why continue to spend resources to optimize further? Principle of diminishing returns.
That's generally what I think as well. Yes, the world could run on older hardware, but you keep making faster and adding more CPU's so, why bother making the code more efficient?
1. Sometimes speed = money. Being the first to market, meeting VC-set milestones for additional funding, and not running out of runway are all things cheaper than the alternatives. Software maintenance costs later don't come close to opportunity costs if a company/project fails.
2. Most of the software is disposable. It's made to be sold, and the code repo will be chucked into a .zip on some corporate drive. There is no post-launch support, and the software's performance after launch is irrelevant for the business. They'll never touch the codebase again. There is no "long-term" for maintenance. They may harm their reputation, but that depends on whether their clients can talk with each other. If they have business or govt clients, they don't care.
3. The average tenure in tech companies is under 3 years. Most people involved in software can consider maintenance "someone else's problem." It's like the housing stock is in bad shape in some countries (like the UK) because the average tenure is less than 10 years. There isn't a person in the property's owner history to whom an investment in long-term property maintenance would have yielded any return. So now the property is dilapidated. And this is becoming a real nationwide problem.
4. Capable SWEs cost a lot more money. And if you hire an incapable IC who will attempt to future-proof the software, maintenance costs (and even onboarding costs) can balloon much more than some inefficient KISS code.
5. It only takes 1 bad engineering manager in the whole history of a particular piece of commercial software to ruin its quality, wiping out all previous efforts to maintain it well. If someone buys a second-hand car and smashes it into a tree hours later, was keeping the car pristinely maintained for that moment (by all the previous owners) worth it?
And so forth. What you say is true in some cases (esp where a company and its employees act in good faith) but not in many others.
In my experiences, companies can afford to care about good software if they have extreme demands (e.g. military, finance) or amortize over very long timeframes (e.g. privately owned). It's rare for consumer products to fall into either of these categories.
What does "make in the long-term" even mean? How do you make a sandwich in the long-term?
Bad things are cheaper and easier to make. If they weren't, people would always make good things. You might say "work smarter," but smarter people cost more money. If smarter people didn't cost more money, everyone would always have the smartest people.
> The buyer cannot differentiate between high and low-quality goods before buying, so the demand for high and low-quality goods is artificially even. The cause is asymmetric information.
That's where FOSS or even proprietary "shared source" wins. You know if the software you depend on is generally badly or generally well programmed. You may not be able to find the bugs, but you can see how long the functions are, the comments, and how things are named. YMMV, but conscientiousness is a pretty great signal of quality; you're at least confident that their code is clean enough that they can find the bugs.
Basically the opposite of the feeling I get when I look at the db schemas of proprietary stuff that we've paid an enormous amount for.
the thing is - countries have set down legal rules preventing selling of food that actively harms the consumer(expired, known poisonous, addition of addictive substances(opiates) etc) to continue your food analogy.
in software the regulations can be boiled down to 'lol lmao' in pre-GDPR era. and even now i see GDPR violations daily.
I like to point out that since ~1980, computing power has increased about 1000X.
If dynamic array bounds checking cost 5% (narrator: it is far less than that), and we turned it on everywhere, we could have computers that are just a mere 950X faster.
If you went back in time to 1980 and offered the following choice:
I'll give you a computer that runs 950X faster and doesn't have a huge class of memory safety vulnerabilities, and you can debug your programs orders of magnitude more easily, or you can have a computer that runs 1000X faster and software will be just as buggy, or worse, and debugging will be even more of a nightmare.
People would have their minds blown at 950X. You wouldn't even have to offer 1000X. But guess what we chose...
Personally I think the 1000Xers kinda ruined things for the rest of us.
Am I taking crazy pills or are programs not nearly as slow as HN comments make them out to be? Almost everything loads instantly on my 2021 MacBook and 2020 iPhone. Every program is incredibly responsive. 5 year old mobile CPUs load modern SPA web apps with no problems.
The only thing I can think of that’s slow is Autodesk Fusion starting up. Not really sure how they made that so bad but everything else seems super snappy.
Slack, teams, vs code, miro, excel, rider/intellij, outlook, photoshop/affinity are all applications I use every day that take 20+ seconds to launch. My corporate VPN app takes 30 seconds to go from a blank screen to deciding if it’s going to prompt me for credentials or remember my login, every morning. This is on an i9 with 64GB ram, and 1GN fiber.
On the website front - Facebook, twitter, Airbnb, Reddit, most news sites, all take 10+ seconds to load or be functional, and their core functionality has regressed significantly in the last decade. I’m not talking about features that I prefer, but as an example if you load two links in Reddit in two different tabs my experience has been that it’s 50/50 if they’ll actually both load or if one gets stuck either way skeletons.
> are all applications I use every day that take 20+ seconds to launch.
I suddenly remembered some old Corel Draw version circa year 2005, which had loading screen enumerating random things it loaded and was computing until a final message "Less than a minute now...". It most often indeed lasted less than a minute to show interface :).
I'm on a four year old mid-tier laptop and opening VS Code takes maybe five seconds. Opening IDEA takes five seconds. Opening twitter on an empty cache takes perhaps four seconds and I believe I am a long way from their servers.
On my work machine slack takes five seconds, IDEA is pretty close to instant, the corporate VPN starts nearly instantly (although the Okta process seems unnecessarily slow I'll admit), and most of the sites I use day-to-day (after Okta) are essentially instant to load.
I would say that your experiences are not universal, although snappiness was the reason I moved to apple silicon macs in the first place. Perhaps Intel is to blame.
VS Code defers a lot of tasks to the background at least. This is a bit more visible in intellij; you seem to measure how long it takes to show its window, but how long does it take for it to warm up and finish indexing / loading everything, or before it actually becomes responsive?
Anyway, five seconds is long for a text editor; 10, 15 years ago, sublime text loaded and opened up a file in <1 second, and it still does today. Vim and co are instant.
Also keep in mind that desktop computers haven't gotten significantly faster for tasks like opening applications in the past years; they're more efficient (especially the M line CPUs) and have more hardware for specialist workloads like what they call AI nowadays, but not much innovation in application loading.
You use a lot of words like "pretty close to", "nearly", "essentially", but 10, 20 years ago they WERE instant; applications from 10, 20 years ago should be so much faster today than they were on hardware from back then.
I wish the big desktop app builders would invest in native applications. I understand why they go for web technology (it's the crossplatform GUI technology that Java and co promised and offers the most advanced styling of anything anywhere ever), but I wish they invested in it to bring it up to date.
I disagree. Vs code uses plugins for all its heavy lifting. Even a minimal plugin setup is substantially slower to load than sublime is, which can also have an LSP plugin.
>Anyway, five seconds is long for a text editor; 10, 15 years ago, sublime text loaded and opened up a file in <1 second, and it still does today. Vim and co are instant.
Do any of those do the indexing that cause the slowness? If not it's comparing apples to oranges.
5 seconds is a lot for a machine with an M4 Pro, and tons of RAM and a very fast SSD.
There's native apps just as, if not more, complicated than VSCode that open faster.
The real problem is electron. There's still good, performant native software out there. We've just settled on shipping a web browser with every app instead.
There is snappy electron software out there too, to be fair. If you create a skeleton electron app it loads just fine. A perceptible delay but still quick.
The problem is when you load it and then react and all its friends, and design your software for everything to be asynchronous and develop it on a 0 latency connection over localhost with a team of 70 people where nobody is holistically considering “how long does it take from clicking the button to doing the thing I want it to do”
This is my third high end workstation computer in the last 5 years and my experience has been roughly consistent with.
My corporate vpn app is a disaster on so many levels, it’s an internally developed app as opposed to Okta or anything like that.
I would likewise say that your experience is not universal, and that in many circumstances the situation is much worse. My wife is running an i5 laptop from 2020 and her work intranet is a 60 second load time. Outlook startup and sync are measured in minutes including mailbox fetching. You can say this is all not the app developers fault, but the crunch that’s installed on her machine is slowing things down by 5 or 10x and that slowdown wouldn’t be a big deal if the apps had reasonable load times in the first place.
It's probably more so that any corporate Windows box has dozens of extra security and metrics agents interrupting and blocking every network request and file open and OS syscall installed by IT teams while the Macs have some very basic MDM profile applied.
For all the people who are doubting that applications are slow and that it must just be me - here [0] is a debugger that someone has built from the ground up that compiles, launches, attaches a debugger and hits a breakpoint in the same length of time that visual studio displays the splash screen for.
That sounds like a corporate anti-virus slowing everything down to me. vscode takes a few seconds to launch for me from within WSL2, with extensions. IntelliJ on a large project takes a while I'll give you that, but just intelliJ takes only a few seconds to launch.
HOW does Slack take 20s to load for you? My huge corporate Slack takes 2.5s to cold load.
I'm so dumbfounded. Maybe non-MacOS, non-Apple silicon stuff is complete crap at that point? Maybe the complete dominance of Apple performance is understated?
Most likely the engineers at many startups only use apple computers themselves and therefore only optimize performance for those systems. It's a shame but IMO result of their incompetence and not result of some magic apple performance gains.
Somehow the Xcode team managed to make startup and some features in newer Xcode versions slower than older Xcode versions running on old Intel Macs.
E.g. the ARM Macs are a perfect illustration that software gets slower faster than hardware gets faster.
After a very short 'free lunch' right after the Intel => ARM transition we're now back to the same old software performance regression spiral (e.g. new software will only be optimized until it feels 'fast enough', and that 'fast enough' duration is the same no matter how fast the hardware is).
Another excellent example is the recent release of the Oblivion Remaster on Steam (which uses the brand new UE5 engine):
On my somewhat medium-level PC I have to reduce the graphics quality in the Oblivion Remaster so much that the result looks worse than 14-year old Skyrim (especially outdoor environments), and that doesn't even result in a stable 60Hz frame rate, while Skyrim runs at a rock-solid 60Hz and looks objectively better in the outdoors.
E.g. even though the old Skyrim engine isn't by far as technologically advanced as UE5 and had plenty of performance issues at launch on a ca. 2010 PC, the Oblivion Remaster (which uses a "state of the art" engine) looks and performs worse than its own 14 years old predecessor.
I'm sure the UE5-based Oblivion remaster can be properly optimized to beat Skyrim both in looks and performance, but apparently nobody cared about that during development.
You're comparing the art(!) of two different games, that targeted two different sets of hardware while using the ideal hardware for one and not the other. Kind of a terrible example.
The art direction, modelling and animation work is mostly fine, the worse look results from the lack of dynamic lighting and ambient occlusion in the Oblivion Remaster when switching Lumen (UE5's realtime global illumination feature) to the lowest setting, this results in completely flat lighting for the vegetation but is needed to get an acceptable base frame rate (it doesn't solve the random stuttering though).
Basically, the best art will always look bad without good lighting (and even baked or faked ambient lighting like in Skyrim looks better than no ambient lighting at all.
Digital Foundry has an excellent video about the issues:
> …when switching Lumen (UE5's realtime global illumination feature) to the lowest setting, this results in completely flat lighting for the vegetation but is needed to get an acceptable base frame rate (it doesn't solve the random stuttering though).
This also happens to many other UE5 games like S.T.A.L.K.E.R. 2 where they try to push the graphics envelope with expensive techniques and most people without expensive hardware have to turn the settings way down (even use things like upscaling and framegen which further makes the experience a bit worse, at least when the starting point is very bad and you have to use them as a crutch), often making these modern games look worse than something a decade old.
Whatever UE5 is doing (or rather, how so many developers choose to use it) is a mistake now and might be less of a mistake in 5-10 years when the hardware advances further and becomes more accessible. Right now it feels like a ploy by the Big GPU to force people to upgrade to overpriced hardware if they want to enjoy any of these games; or rather, sillyness aside, is an attempt by studios to save resources by making the artists spend less time on faking and optimizing effects and detail that can just be brute forced by the engine.
In contrast, most big CryEngine and idTech games run great even on mid range hardware and still look great.
I haven't really played it myself but it sounds like from the video you posted the remasters a bit of an outlier in terms of bad performance. Again it seems like a bad example to pull from.
What timescale are we talking about? Many DOS stock and accounting applications were basically instantaneous. There are some animations on iPhone that you can't disable that take longer than a series of keyboard actions of a skilled operator in the 90s. Windows 2k with a stripped shell was way more responsive that today's systems as long as you didn't need to hit the harddrives.
The "instant" today is really laggy compared to what we had. Opening Slack takes 5s on a flagship phone and opening a channel which I just had open and should be fully cached takes another 2s. When you type in JIRA the text entry lags and all the text on the page blinks just a tiny bit (full redraw). When pages load on non-flagship phones (i.e. most of the world), they lag a lot, which I can see on monitoring dashboards.
I just clicked on the network icon next to the clock on a Windows 11 laptop. A gray box appeared immediately, about one second later all the buttons for wifi, bluetooth, etc appeared. Windows is full of situations like this, that require no network calls, but still take over one second to render.
It's strange, it visibly loading the buttons is indicative they use async technology that can use multithreaded CPUs effectively... but it's slower than the old synchronous UI stuff.
I'm sure it's significantly more expensive to render than Windows 3.11 - XP were - rounded corners and scalable vector graphics instead of bitmaps or whatever - but surely not that much? And the resulting graphics can be cached.
Windows 3.1 wasn't checking WiFi, Bluetooth, energy saving profile, night light setting, audio devices, current power status and battery level, audio devices, and more when clicking the non-existent icon on the non-existent taskbar. Windows XP didn't have this quick setting area at all. But I do recall having the volume slider take a second to render on XP from time to time, and that was only rendering a slider.
And FWIW this stuff is then cached. I hadn't clicked that setting area in a while (maybe the first time this boot?) and did get a brief gray box that then a second later populated with all the buttons and settings. Now every time I click it again it appears instantly.
Honestly it behaves like the interface is some Electron app that has to load the visual elements from a little internal webserver. That would be a very silly way to build an OS UI though, so I don't know what Microsoft is doing.
Yep. I suspect GP has just gotten used to this and it is the new “snappy” to them.
I see this all the time with people who have old computers.
“My computer is really fast. I have no need to upgrade”
I press cmd+tab and watch it take 5 seconds to switch to the next window.
That’s a real life interaction I had with my parents in the past month. People just don’t know what they’re missing out on if they aren’t using it daily.
Yeah, I play around with retro computers all the time. Even with IO devices that are unthinkably performant compared to storage hardware actually common at the time these machines are often dog slow. Just rendering JPEGs can be really slow.
Maybe if you're in a purely text console doing purely text things 100% in memory it can feel snappy. But the moment you do anything graphical or start working on large datasets its so incredibly slow.
I still remember trying to do photo editing on a Pentium II with a massive 64MB of RAM. Or trying to get decent resolutions scans off a scanner with a Pentium III and 128MB of RAM.
64MB is about the size of (a big) L3 cache. Today's L3 caches have a latency of 3-12ns and throughput measured in hundreds of gigabytes per second. And yet we can't manage to get responsive UIs because of tons of crud.
My modern machine running a modern OS is still way snappier while actually loading the machine and doing stuff. Sure, if I'm directly on a tty and just running vim on a small file its super fast. The same on my modern machine. Try doing a few things at once or handle some large dataset and see how well it goes.
My older computers would completely lock up when given a large task to do, often for many seconds. Scanning an image would take over the whole machine for like a minute per page! Applying a filter to an image would lock up the machine for several seconds even for a much smaller image a much simpler filter. The computer cannot even play mp3's and have a responsive word processor, if you really want to listen to music while writing a paper you better have it pass through the audio from a CD, much less think about streaming it from some remote location and have a whole encrypted TCP stream and decompression.
These days I can have lots of large tasks running at the same time and still have more responsiveness.
I have fun playing around with retro hardware and old applications, but "fast" and "responsive" are not adjectives I'd use to describe them.
A mix of both. There are large number of websites that are inefficiently written using up unnecessary amounts of resources. Semi-modern devices make up for that by just having a massive amount of computing power.
However, you also need to consider 2 additional factors. Macbooks and iPhones, even 4 year old ones, have usually been at the upper end of the scale for processing power. (When compared to the general mass-market of private end-consumer devices)
Try doing the same on a 4 year old 400 Euro laptop and it might look a bit different. Also consider your connection speed and latency.
I usually have no loading issue either. But I have a 1G fiber connection. My parents don't.
Yep. Developers make programs run well enough on the hardware sitting on our desks. So long as we’re well paid (and have decent computers ourselves), we have no idea what the average computing experience is for people still running 10yo computers which were slow even for the day. And that keeps the treadmill going. We make everyone need to upgrade every few years.
A few years ago I accidentally left my laptop at work on a Friday afternoon. Instead of going into the office, I pulled out a first generation raspberry pi and got everything set up on that. Needless to say, our nodejs app started pretty slowly. Not for any good reason - there were a couple modules which pulled in huge amounts of code which we didn’t use anyway. A couple hours work made the whole app start 5x faster and use half the ram. I would never have noticed that was a problem with my snappy desktop.
> Yep. Developers make programs run well enough on the hardware sitting on our desks. So long as we’re well paid (and have decent computers ourselves), we have no idea what the average computing experience is for people still running 10yo computers which were slow even for the day. And that keeps the treadmill going. We make everyone need to upgrade every few years.
Same thing happens with UI & Website design. When the designers and front-end devs all have top-spec MacBooks, with 4k+ displays, they design to look good in that environment.
Then you ship to the rest of the world which are still for the most part on 16:9 1920x1080 (or god forbid, 1366x768), low spec windows laptops and the UI looks like shit and is borderline unstable.
Now I don't necessarily think things should be designed for the lowest common denominator, but at the very least we should be taking into consideration that the majority of users probably don't have super high end machines or displays. Even today you can buy a brand new "budget" windows laptop that'll come with 8GB of RAM, and a tiny 1920x1080 display, with poor color reproduction and crazy low brightness - and that's what the majority of people are using, if they are using a computer at all and not a phone or tablet.
When I bought my current laptop, it was the cheapest one Costco had with 8 gigs of memory, which was at the time plenty for all but specialized uses. I've since upgraded it to 16, which feels like the current standard for that.
But...why? Why on earth do I need 16 gigs of memory for web browsing and basic application use? I'm not even playing games on this thing. But there was an immediate, massive spike in performance when I upgraded the memory. It's bizarre.
I've found so many performance issues at work by booting up a really old laptop or working remotely from another continent. It's pretty straightforward to simulate either poor network conditions or generally low performance hardware, but we just don't generally bother to chase down those issues.
Oh yeah, I didn't even touch on devs being used to working on super faster internet.
If you're on Mac, go install Network Link Conditioner and crank that download an upload speed way down. (Xcode > Open Developer Tools > More Developer Tools... > "Additional Tools for Xcode {Version}").
Spotify takes 7 seconds from clicking on its icon to playing a song on a 2024 top-of-the-range MacBook Pro. Navigating through albums saved on your computer can take several seconds. Double clicking on a song creates a 1/4sec pause.
This is absolutely remarkable inefficiency considering the application's core functionality (media players) was perfected a quarter century ago.
One example is Office. Microsoft is going back to preloading office during Windows Boot so that you don't notice it loading. With the average system spec 25 years ago it made sense to preload office. But today, what is Office doing that it needs to offload its startup to running at boot?
To note, people will have wildly different tolerance to delays and lag.
On the extreme, my retired parents don't feel the difference between 5s or 1s when loading a window or clicking somewhere. I offered a switch to a new laptop, cloning their data, and they didn't give a damn and just opened the laptop the closest to them.
Most people aren't that desensitized, but for some a 600ms delay is instantaneous when for other it's 500ms too slow.
I think it's a very theoretical argument: we could of course theoretically make everything even faster. It's nowhere near the most optimal use of the available hardware. All we'd have to give up is squishy hard-to-measure things like "feature sets" and "engineering velocity."
we could of course theoretically make everything even faster. It's nowhere near the most optimal use of the available hardware. All we'd have to give up is squishy hard-to-measure things like "feature sets" and "engineering velocity."
Says who? Who are these experienced people that know how to write fast software that think it is such a huge sacrifice?
The reality is that people who say things like this don't actually know much about writing fast software because it really isn't that difficult. You just can't grab electron and the lastest javascript react framework craze.
These kinds of myths get perpetuated by people who repeat it without having experienced the side of just writing native software. I think mostly it is people rationalizing not learning C++ and sticking to javascript or python because that's what they learned first.
> These kinds of myths get perpetuated by people who repeat it without having experienced the side of just writing native software. I think mostly it is people rationalizing not learning assembly and sticking to C++ or PERL because that's what they learned first.
Why stop at C++? Is that what you happen to be comfortable with? Couldn't you create even faster software if you went down another level? Why don't you?
Couldn't you create even faster software if you went down another level? Why don't you?
No and if you understood what makes software fast you would know that. Most software is allocating memory inside hot loops and taking that out is extremely easy and can easily be a 7x speedup. Looping through contiguous memory instead of chasing pointers through heap allocated variables is another 25x - 100x speed improvement at least. This is all after switching from a scripting language, which is about a 100x in itself if the language is python.
It isn't about the instructions it is about memory allocation and prefetching.
Sorry but it is absolutely the case that there are optimizations available to someone working in assembly that are not available to someone working in C++.
You are probably a lazy or inexperienced engineer if you choose to work in C++.
In fact, there are optimizations available at the silicon level that are not available in assembly.
You are probably a lazy or inexperienced engineer if you choose to work in assembly.
Try forcefully closing VSCode and your browser, and see how long it takes to open them again. The same is true for most complex webpages/'webapps' (Slack, Discord, etc).
A lot of other native Mac stuff is also less than ideal. Terminal keeps getting stuck all the time, Mail app can take a while to render HTML emails, Xcode is Xcode, and so on.
I think it’s a little more nuanced than the broad takes make it seem.
One of the biggest performance issues I witness is that everyone assumes a super fast, always on WiFi/5G connection. Very little is cached locally on device so even if I want to do a very simple search through my email inbox I have to wait on network latency. Sometimes that’s great, often it really isn’t.
Same goes for many SPA web apps. It’s not that my phone can’t process the JS (even though there’s way too much of it), it’s poor caching strategies that mean I’m downloading and processing >1MB of JS way more often than I should be. Even on a super fast connection that delay is noticeable.
Correction: devs have made the mistake of turning everything into remote calls, without having any understanding as to the performance implications of doing so.
Sonos’ app is a perfect example of this. The old app controlled everything locally, since the speakers set up their own wireless mesh network. This worked fantastically well. Someone at Sonos got the bright idea to completely rewrite the app such that it wasn’t even backwards-compatible with older hardware, and everything is now a remote calls. Changing volume? Phone —> Router —> WAN —> Cloud —> Router —> Speakers. Just… WHY. This failed so spectacularly that the CEO responsible stepped down / was forced out, and the new one claims that fixing the app is his top priority. We’ll see.
Why not log them to a file and cron a script to upload the data? Even if the feature request is nonsensical, you can architect a solution that respect the platform's constraints. It's kinda like when people drag in React and Next.js just to have a static website.
You’re right, and I shouldn’t necessarily blame devs for the idea, though I do blame their CTO for not standing up to it if nothing else.
Though it’s also unclear to me in this particular case why they couldn’t collect commands being issued, and then batch-send them hourly, daily, etc. instead of having each one route through the cloud.
In Carmack's Lex Fridman interview he says he knows C++ devs who still insist on using some ancient version of MSVC because it's *so fast* compared to the latest, on the latest hardware.
The Nintendo Switch on a chipset that was outdated a decade ago can run Tears of the Kingdom. It's not sensible that modern hardware is anything less than instant.
Online Word (or Microsoft 365, or whatever it is called) regularly took me 2 minutes to load a 120 page document. I'm being very literal here. You could see it load in real time approximately 1 page a second. And it wasn't a network issue, mind you. It was just that slow.
Worse, the document strained my laptop so much as I used it, I regularly had to reload the web-page.
A lot of nostalgia is at work here. Modern tech is amazing. If the old tools were actually better people would actually use them. Its not like you can't get them to work.
It vastly depends on what software you're forced to use.
Here's some software I use all the time, which feels horribly slow, even on a new laptop:
Slack.
Switching channels on slack, even when you've just switched so it's all cached, is painfully slow. I don't know if they build in a 200ms or so delay deliberately to mask when it's not cached, or whether it's some background rendering, or what it is, but it just feels sluggish.
Outlook
Opening an email gives a spinner before it's opened. Emails are about as lightweight as it gets, yet you get a spinner. It's "only" about 200ms, but that's still 200ms of waiting for an email to open. Plain text emails were faster 25 years ago. Adding a subset of HTML shouldn't have caused such a massive regression.
Teams
Switching tabs on teams has the same delayed feeling as Slack. Every iteraction feels like it's waiting 50-100ms before actioning. Clicking an empty calendar slot to book a new event gives 30-50ms of what I've mentally internalised as "Electron blank-screen" but there's probably a real name out there for basically waiting for a new dialog/screen to even have a chrome, let alone content. Creating a new calendar event should be instant, it should not take 300-500ms or so of waiting for the options to render.
These are basic "productivity" tools in which every single interaction feels like it's gated behind at least a 50ms debounce waiting period, with often extra waiting for content on top.
Is the root cause network hops or telemetry? Is it some corporate antivirus stealing the computer's soul?
Ultimately the root cause doesn't actually matter, because no matter the cause, it still feels like I'm wading through treacle trying to interact with my computer.
I don't get any kind of spinner on Outlook opening emails. Especially emails which are pure text or only lightly stylized open instantly. Even emails with calendar invites load really fast, I don't see any kind of spinner graphic at all.
Running latest Outlook on Windows 11, currently >1k emails in my Inbox folder, on an 11th gen i5, while also on a Teams call a ton of other things active on my machine.
This is also a machine with a lot of corporate security tools sapping a lot of cycles.
You're probably right, I'm likely massively underestimating the time, it's long enough to be noticable, but not so long that it feels instantly frustrating the first time, it just contributes to an overall sluggishness.
You are using a relatively high end computer and mobile device. Go and find a cheap laptop x86 and try doing the same. It will be extremely painful. Most of this is due to a combination of Windows 11 being absolute trash and JavaScript being used extensively in applications/websites. JavaScript is memory hog and can be extremely slow depending on how it is written (how you deal with loops massively affects the performance).
What is frustrating though that until relatively recently these devices would work fine with JS heavy apps and work really well with anything that is using a native toolkit.
I’m sure you know this, but a reminder that modern devices cache a hell of a lot, even when you “quit” such that subsequent launches are faster. Such is the benefit of more RAM.
I could compare Slack to, say, HexChat (or any other IRC client). And yeah, it’s an unfair comparison in many ways – Slack has far more capabilities. But from another perspective, how many of them do you immediately need at launch? Surely the video calling code could be delayed until after the main client is up, etc. (and maybe it is, in which case, oh dear).
A better example is Visual Studio [0], since it’s apples to apples.
Apple unlike the other Silicon Valley giants has figured out that latency >>> throughput. Minimizing latency is much more important for making a program "feel" fast than maximizing latency. Some of the apps I interact with daily are Slack, Teams (ugh), Gmail, and YouTube and they are all slow as dogshit.
They're comparing these applications to older applications that loaded instantly on much slower computers.
Both sides are right.
There is a ton of waste and bloat and inefficiency. But there's also a ton of stuff that genuinely does demand more memory and CPU. An incomplete list:
- Higher DPI displays use intrinsically more memory and CPU to paint and rasterize. My monitor's pixel array uses 4-6X more memory than my late 90s PC had in the entire machine.
- Better font rendering is the same.
- Today's UIs support Unicode, right to left text, accessibility features, different themes (dark/light at a minimum), dynamic scaling, animations, etc. A modern GUI engine is similar in difficulty to a modern game engine.
- Encryption everywhere means that protocols are no longer just opening a TCP connection but require negotiation of state and running ciphers.
- The Web is an incredibly rich presentation platform that comes with the overhead of an incredibly rich presentation platform. It's like PostScript meets a GUI library meets a small OS meets a document markup layer meets...
- The data sets we deal with today are often a lot larger.
- Some of what we've had to do to get 1000X performance itself demands more overhead: multiple cores, multiple threads, 64 bit addressing, sophisticated MMUs, multiple levels of cache, and memory layouts optimized for performance over compactness. Those older machines were single threaded machines with much more minimal OSes, memory managers, etc.
- More memory means more data structure overhead to manage that memory.
- Larger disks also demand larger structures to manage them, and modern filesystems have all kinds of useful features like journaling and snapshots that also add overhead.
IMO, the prime offender is simply not understanding fundamentals. From simple things like “a network call is orders of magnitude slower than a local disk, which is orders of magnitude slower than RAM…” (and moreover, not understanding that EBS et al. are networked disks, albeit highly specialized and optimized), or doing insertions to a DB by looping over a list and writing each row individually.
I have struggled against this long enough that I don’t think there is an easy fix. My current company is the first I’ve been at that is taking it seriously, and that’s only because we had a spate of SEV0s. It’s still not easy, because a. I and the other technically-minded people have to find the problems, then figure out how to explain them b. At its heart, it’s a culture war. Properly normalizing your data model is harder than chucking everything into JSON, even if the former will save you headaches months down the road. Learning how to profile code (and fix the problems) may not be exactly hard, but it’s certainly harder than just adding more pods to your deployment.
The major slowdown of modern applications is network calls. Spend 50-500ms a pop for a few kilos of data. Many modern applications will spin up a half dozen blocking network calls casually.
Most of it was exchanged for abstractions which traded runtime speed for the ability to create apps quickly and cheaply.
The market mostly didn't want 50% faster code as much as it wanted an app that didn't exist before.
If I look at the apps I use on a day to day basis that are dog slow and should have been optimized (e.g. slack, jira), it's not really a lack of the industry's engineering capability to speed things up that was the core problem, it is just an instance the principal-agent problem - i.e. I'm not the one buying, I don't get to choose not to use it and dog-slow is just one of many the dimensions in which they're terrible.
But each vendor only develop a few software and generally supports only three platforms -/+ one. It’s so damning when I see projects reaching out for electron, when they only support macOS and Windows. And software like Slack has no excuse for being this slow on anything other than latest gen cpu and 1gb internet connection.
Users only want 5% of the features of the few programs they use. However everyone has a different list of features and a different list of programs. And so to get a market you need all the features on all the programs.
> Most of it was exchanged for abstractions which traded runtime speed for the ability to create apps quickly and cheaply.
Really? Because while abstractions like that exist (i.e. a webserver frameworks, reactivity, SQL and ORMs etc), I would argue that these aren't the abstractions that cause the most maintenance and performance issues. These are usually in the domain/business application and often not something that made anything quicker to develop or anything, but instead created by a developer that just couldn't help themselves
The backend programming language usually isn't a significant bottleneck; running dozens of database queries in sequence is the usual bottleneck, often compounded by inefficient queries, inappropriate indexing, and the like.
Yep. I’m a DBRE, and can confirm, it’s almost always the DB, with the explicit caveat that it’s also rarely the fault of the DB itself, but rather the fault of poor schema and query design.
Queries I can sometimes rewrite, and there’s nothing more satisfying than handing a team a 99% speed-up with a couple of lines of SQL. Sometimes I can’t, and it’s both painful and frustrating to explain that the reason the dead-simple single-table SELECT is slow is because they have accumulated billions of rows that are all bloated with JSON and low-cardinality strings, and short of at a minimum table partitioning (with concomitant query rewrites to include the partition key), there is nothing anyone can do. This has happened on giant instances, where I know the entire working set they’re dealing with is in memory. Computers are fast, but there is a limit.
The other way the DB gets blamed is row lock contention. That’s almost always due to someone opening a transaction (e.g. SELECT… FOR UPDATE) and then holding it needlessly while doing other stuff, but sometimes it’s due to the dev not being aware of the DB’s locking quirks, like MySQL’s use of gap locks if you don’t include a UNIQUE column as a search predicate. Read docs, people!
It seems to me most developers don't want to learn much about the database and would prefer to hide it behind the abstractions used by their language of choice. I can relate to a degree; I was particularly put off by SQL's syntax (and still dislike it), but eventually came to see the value of leaning into the database's capabilities.
Certain ORMs such as Rails's ActiveRecord are part of the problem because they create the illusion that local memory access and DB access are the same thing. This can lead to N+1 queries and similar issues. The same goes for frameworks that pretend that remote network calls are just a regular method access (thankfully, such frameworks seem to have become largely obsolete).
The fact that this was seen as an acceptable design decision both by the creators, and then taken up by the industry is in an of itself a sign of a serious issue.
I made a vendor run their buggy and slow software on a Sparc 20 against their strenuous complaints to just let them have an Ultra, but when they eventually did optimize their software to run efficiently (on the 20) it helped set the company up for success in the wider market. Optimization should be treated as competitive advantage, perhaps in some cases one of the most important.
> If dynamic array bounds checking cost 5% (narrator: it is far less than that)
It doesn’t work like that. If an image processing algorithm takes 2 instructions per pixel, adding a check to every access could 3-4x the cost.
This is why if you dictate bounds checking then the language becomes uncompetitive for certain tasks.
The vast majority of cases it doesn’t matter at all - much less than 5%. I think safe/unsafe or general/performance scopes are a good way to handle this.
It's not that simple either - normally, if you're doing some loops over a large array of pixels, say, to perform some operation to them, there will only be a couple of bounds checks before the loop starts, checking the starting and ending conditions of the loops, not re-doing the bounds check for every pixel.
So very rarely should it be anything like 3-4x the cost, though some complex indexing could cause it to happen, I suppose. I agree scopes are a decent way to handle it!
Your argument is exactly why we ended up with the abominations of C and C++ instead of the safety of Pascal, Modula-2, Ada, Oberon, etc. Programmers at the time didn't realize how little impact safety features like bounds checking have. The bounds only need to be checked once for a for loop, not on each iteration.
Don't forget the law of large numters. 5% performance hit on one system is one thing, 5% across almost all of the current computing landscape is still a pretty huge value.
But it's not free for the taking. The point is that we'd get more than that 5%'s worth in exchange. So sure, we'll get significant value "if software optimization was truly a priority", but we get even more value by making other things a priority.
Saying "if we did X we'd get a lot in return" is similar to the fallacy of inverting logical implication. The question isn't, will doing something have significant value, but rather, to get the most value, what is the thing we should do? The answer may well be not to make optimisation a priority even if optimisation has a lot of value.
depends on whether the fact that software can be finished will ever be accepted. If you're constantly redeveloping the same thing to "optimize and streamline my experience" (please don't) then yes, the advantage is dubious. But if not, then the saved value in operating costs keeps increasing as time goes on. It won't make much difference in my homelab, but at datacenter scale it does
Even the fact that value keeps increasing doesn't mean it's a good idea. It's a good idea if it keeps increasing more than other value. If a piece of software is more robust against attacks then the value in that also keeps increasing over time, possibly more than the cost in hardware. If a piece of software is easier to add features to, then that value also keeps increasing over time.
If what we're asking is whether value => X, i.e. to get the most value we should do X, you cannot answer that in the positive by proving X => value. If optimising something is worth a gazillion dollars, you still should not do it if doing something else is worth two gazillion dollars.
I agree with the sentiment and analysis that most humans prefer short term gains over long term ones. One correction to your example, though. Dynamic bounds checking does not solve security. And we do not know of a way to solve security. So, the gains are not as crisp as you are making them seem.
Bounds checking solves one tiny subset of security. There are hundreds of other subsets that we know how to solve. However these days the majority of the bad attacks are social and no technology is likely to solve them - as more than 10,000 years of history of the same attack has shown. Technology makes the attacks worse because they now scale, but social attacks have been happening for longer than recorded history (well there is every reason to believe that - there is unlikely to evidence going back that far).
> However these days the majority of the bad attacks are social
You're going to have to cite a source for that.
Bounds checking is one mechanism that addresses memory safety vulnerabilities. According to MSFT and CISA[1], nearly 70% of CVEs are due to memory safety problems.
You're saying that we shouldn't solve one (very large) part of the (very large) problem because there are other parts of the problem that the solution wouldn't address?
You don't have to "solve" security in order to improve security hygiene by a factor of X, and thus risk of negative consequences by that same factor of X.
>Personally I think the 1000Xers kinda ruined things for the rest of us.
Reminds me of when NodeJS came out that bridged client and server side coding. And apparently their repos can be a bit of a security nightmare nowadays- so the minimalist languages with limited codebase do have their pros.
I think it'd be pretty funny if to book travel in 2035 you need to use a travel agent that's objectively dumber than a human. We'd be stuck in the eighties again, but this time without each other to rely on.
Of course, that would be suicide for the industry. But I'm not sure investors see that.
I don't think we are gonna go there. Talking is cumbersome. There's a reason, besides social anxiety that people prefer to use self-checkout and electronically order fastfood. There are easier ways to do a lot of things than with words.
I'd bet on maybe ad hoc ai designed ui-s you click but have a voice search when you are confused about something.
Search is being replaced by LLM chat. Agent workflows are going to get us to a place where people can rally software to their own purposes. At that point, they don't have to interact with the web front end, they can interact with their own personal front-end that is able to navigate your backend.
Today a website is easier. But just like there's a very large percentage of people doing a great many things from their phone instead of tying themselves to a full-blown personal computer, there will be an increasing number of people who send their agents off to get things done. In that scenario, the user interface is further up the stack than a browser, if there's a browser as typically understood in the stack at all.
If you know what you want then not talking to a human is faster. However if you are not sure a human can figure out. I'm not sure I'd trust a voice assistant - the value in the human is an informed opinion which is hard to program, but it is easy to program a recommendation for whatever makes the most profit. Of course humans often don't have an informed opinion either, but at least sometimes they do, and they will also sometimes admit it when they don't.
> the value in the human is an informed opinion which is hard to program
I don't think I ever used a human for that. They are usually very uninformed about everything that's not their standard operational procedure or some current promotional materials.
20 years ago when I was at McDonalds there would be several customers per shift (so many 1 in 500?) who didn't know what they wanted and asked for a recommendation. Since I worked there I ate there often enough to know if the special was something I liked or not.
Bless your souls. I'm not saying it doesn't happen. I just personally had only bad experiences so I actively avoid human interactive input in my commercial activity.
The first reply is essentially right. This isn't what happened at all, just because C is still prevalent. All the inefficiency is everything down the stack, not in C.
I don't trust that shady-looking narrator. 5% of what exactly? Do you mean that testing for x >= start and < end is only 5% as expensive as assigning an int to array[x]?
Or would bounds checking in fact more than double the time to insert a bunch of ints separately into the array, testing where each one is being put? Or ... is there some gimmick to avoid all those individual checks, I don't know.
You can always install DOS as your daily driver and run 1980's software on any hardware from the past decade, and then tell me how that's slow.
1000x referred to the hardware capability, and that's not a rarity that is here.
The trouble is how software has since wasted a majority of that performance improvement.
Some of it has been quality of life improvements, leading nobody to want to use 1980s software or OS when newer versions are available.
But the lion's share of the performance benefit got chucked into the bin with poor design decisions, layers of abstractions, too many resources managed by too many different teams that never communicate making any software task have to knit together a zillion incompatible APIs, etc.
The sad thing is that even running DOS software in DOSBox (or in QEMU+FreeDOS), or Amiga software in UAE, is much faster than any native software I have run in many years on any modern systems. They also use more reasonable amounts of storage/RAM.
Animations is part of it of course. A lot of old software just updates the screen immediately, like in a single frame, instead of adding frustrating artificial delays to every interaction. Disabling animations in Android (an accessibility setting) makes it feel a lot faster for instance, but it does not magically fix all apps unfortunately.
That's about a 168x difference. That was from before Moores law started petering out.
For only a 5x speed difference you need to go back to the 4th or 5th generation Intel Core processors from about 10 years ago.
It is important to note that the speed figure above is computed by adding all of the cores together and that single core performance has not increased nearly as much. A lot of that difference is simply from comparing a single core processor with one that has 20 cores. Single core performance is only about 8 times faster than that ancient Pentium 4.
IPC could be 80x higher when taking into account SIMD and then you have to multiply by each core. Mainstream CPUs are more like 1 to 2 million times faster than what was there in the 80s.
You can get full refurbished office computers that are still in the million times faster range for a few hundred dollars.
The things you are describing don't have much to do with computers being slow and feeling slow, but they are happening anyway.
Scripting languages that are constantly allocating memory to any small operation and pointer chasing ever variable because the type is dynamic is part of the problem, then you have people writing extremely inefficient programs in an already terrible environment.
Most programs are written now in however way the person writing them wants to work, not how someone using it wishes they were written.
Most people have actually no concept of optimization or what runs faster than something else. The vast majority of programs are written by someone who gets it to work and thinks "this is how fast this program runs".
The idea that the same software can run faster is a niche thought process, not even everyone on hacker news thinks about software this way.
I think on year 2001 GHz CPU should be a performance benchmark that every piece of basic non-high performance software should execute acceptably on.
This is kind of been a disappointment to me of AI when I've tried it. This has kind of been a disappointment to me of AI when I've tried it. Llm should be able to Port things. It should be able to rewrite things with the same interface. It should be able to translate from inefficient languages to more efficient ones.
It should even be able to optimize existing code bases automatically, or at least diagnose or point out poor algorithms, cache optimization, etc.
Heck I remember powerbuilder in the mid 90s running pretty well on 200 mhz CPUs. It doesn't even really interpreted stuff. It's just amazing how slow stuff is. Do rounded corners and CSS really consume that much CPU power?
My limited experience was trying to take the unix sed source code and have AI port it into a jvm language, and it could do the most basic operations, but utterly failed at even the intermediate sed capabilities. And then optimize? Nope
Of course there's no desire for something like that. Which really shows what the purpose of all this is. It's to kill jobs. It's not to make better software. And it means AI is going to produce a flood of bad software. Really bad software.
So I've worked for Google (and Facebook) and it really drives the point home of just how cheap hardware is and how not worth it optimizing code is most of the time.
More than a decade ago Google had to start managing their resource usage in data centers. Every project has a budget. CPU cores, hard disk space, flash storage, hard disk spindles, memory, etc. And these are generally convertible to each other so you can see the relative cost.
Fun fact: even though at the time flash storage was ~20x the cost of hard disk storage, it was often cheaper net because of the spindle bottleneck.
Anyway, all of these things can be turned into software engineer hours, often called "mili-SWEs" meaning a thousandth of the effort of 1 SWE for 1 year. So projects could save on hardware and hire more people or hire fewer people but get more hardware within their current budgets.
I don't remember the exact number of CPU cores amounted to a single SWE but IIRC it was in the thousands. So if you spend 1 SWE year working on optimization acrosss your project and you're not saving 5000 CPU cores, it's a net loss.
Some projects were incredibly large and used much more than that so optimization made sense. But so often it didn't, particularly when whatever code you wrote would probably get replaced at some point anyway.
The other side of this is that there is (IMHO) a general usability problem with the Web in that it simply shouldn't take the resources it does. If you know people who had to or still do data entry for their jobs, you'll know that the mouse is pretty inefficient. The old terminals from 30-40+ years ago that were text-based had some incredibly efficent interfaces at a tiny fraction of the resource usage.
I had expected that at some point the Web would be "solved" in the sense that there'd be a generally expected technology stack and we'd move on to other problems but it simply hasn't happened. There's still a "framework of the week" and we're still doing dumb things like reimplementing scroll bars in user code that don't work right with the mouse wheel.
I don't know how to solve that problem or even if it will ever be "solved".
Except you’re self selecting for a company that has high engineering costs, big fat margins to accommodate expenses like additional hardware, and lots of projects for engineers to work on.
The evaluation needs to happen in the margins, even if it saves pennies/year on the dollar, it’s best to have those engineers doing that than have them idling.
The problem is that almost no one is doing it, because the way we make these decisions has nothing to do with the economical calculus behind, most people just do “what Google does”, which explains a lot of the disfunction.
The title made me think Carmack was criticizing poorly optimized software and advocating for improving performance on old hardware.
When in fact, the tweet is absolutely not about either of the two. He's talking about a thought experiment where hardware stopped advancing and concludes with "Innovative new products would get much rarer without super cheap and scalable compute, of course".
I think its a bad argument though. If we had to stop with the features for a little while and created some breathing room, the features would come roaring back. There'd be a downturn sure but not a continuous one.
> "Innovative new products would get much rarer without super cheap and scalable compute, of course".
Interesting conclusion—I'd argue we haven't seen much innovation since the smartphone (18 years ago now), and it's entirely because capital is relying on the advances of hardware to sell what is to consumers essentially the same product that they already have.
Of course, I can't read anything past the first tweet.
We have self driving cars, amazing advancement in computer graphics, dead reckoning of camera position from visual input...
In the meantime, hardware has had to go wide on threads as single core performance has not improved. You could argue that's been a software gain and a hardware failure.
Single core performance has improved, but at a much slower rate than I experienced as a kid.
Over the last 10 years, we are something like 120% improvement in single core performance.
And, not for nothing, efficiency has become much more important. More CPU performance hasn't been a major driving factor vs having a laptop that runs for 12 hours. It's simply easier to add a bunch of cores and turn them all off (or slow them down) to gain power efficiency.
Not to say the performance story would be vastly different with more focus on performance over efficiency. But I'd say it does have an effect on design choices.
And I'd argue that we've seen tons of innovation in the past 18 years aside from just "the smartphone" but it's all too easy to take for granted and forget from our current perspective.
First up, the smartphone itself had to evolve a hell of a lot over 18 years or so. Go try to use an iPhone 1 and you'll quickly see all of the roadblocks and what we now consider poor design choices littered everywhere, vs improvements we've all taken for granted since then.
18 years ago was 2007? Then we didn't have (for better or for worse on all points):
* Video streaming services
* Decent video game market places or app stores. Maybe "Battle.net" with like 5 games, lol!
* VSCode-style IDEs (you really would not have appreciated Visual Studio or Eclipse of the time..)
* Mapping applications on a phone (there were some stand-alone solutions like Garmin and TomTom just getting off the ground)
* QR Codes (the standard did already exist, but mass adoption would get nowhere without being carried by the smartphone)
* Rideshare, food, or grocery delivery services (aside from taxis and whatever pizza or chinese places offered their own delivery)
* Voice-activated assistants (including Alexa and other standalone devices)
* EV Cars (that anyone wanted to buy) or partial autopilot features aside from 1970's cruise control
* Decent teleconferencing (Skype's featureset was damn limited at the time, and any expensive enterprise solutions were dead on the launchpad due to lack of network effects)
* Decent video displays (flatscreens were still busy trying to mature enough to push CRTs out of the market at this point)
* Color printers were far worse during this period than today, though that tech will never run out of room for improvement.
* Average US Internet speeds to the home were still ~1Mbps, with speeds to cellphone of 100kbps being quite luxurious. Average PCs had 2GB RAM and 50GB hard drive space.
* Naturally: the tech everyone loves to hate such as AI, Cryptocurrencies, social network platforms, "The cloud" and SaaS, JS Frameworks, Python (at least 3.0 and even realistically heavy adoption of 2.x), node.js, etc. Again "Is this a net benefit to humanity" and/or "does this get poorly or maliciously used a lot" doesn't speak to whether or not a given phenomena is innovative, and all of these objectively are.
> * VSCode-style IDEs (you really would not have appreciated Visual Studio or Eclipse of the time..)
I used VS2005 a little bit in the past few years, and I was surprised to see that it contains most of the features that I want from an IDE. Honestly, I wouldn't mind working on a C# project in VS2005 - both C# 2.0 and VS2005 were complete enough that they'd only be a mild annoyance compared to something more modern.
> partial autopilot features aside from 1970's cruise control
Radar cruise control was a fairly common option on mid-range to high-end cars by 2007. It's still not standard in all cars today (even though it _is_ standard on multiple economy brands). Lane departure warning was also available in several cars. I will hand it to you that L2 ADAS didn't really exist the way it does today though.
I worked for a 3rd party food delivery service in the summer of 2007. Ordering was generally done by phone, then the office would text us (the drivers) order details for pickup & delivery. They provided GPS navigation devices, but they were stand-alone units that were slower & less accurate than modern ones, plus they charged a small fee for using it that came out of our pay.
Steam was selling games, even third party ones, for years by 2007.
I'm not sure what a "VS-Code style IDE" is, but I absolutely did appreciate Visual Studio ( and VB6! ) prior to 2007.
2007 was in fact the peak of TomTom's profit, although GPS navigation isn't really the same as general purpose mapping application.
Grocery delivery was well established, Tesco were doing that in 1996. And the idea of takeaways not doing delivery is laughable, every establishment had their own delivery people.
Yes, there are some things on that list that didn't exist, but the top half of your list is dominated by things that were well established by 2007.
There has been a lot of innovation - but it is focused to some niche and so if you are not in a niche you don't see it and wouldn't care if you did. Most of the major things you need have already invented - I recall word processors as a kid, so they for sure date back to the 1970s - we still need word processors and there is a lot of polish that can be added, but all innovation is in niche things that the majority of us wouldn't have a use for if we knew about it.
Of course innovation is always in bits and spurts.
I heartily agree. It would be nice if we could extend the lifetime of hardware 5, 10 years past its, "planned obsolescence." This would divert a lot of e-waste, leave a lot of rare earth minerals in the ground, and might even significantly lower GHG emissions.
The market forces for producing software however... are not paying for such externalities. It's much cheaper to ship it sooner, test, and iterate than it is to plan and design for performance. Some organizations in the games industry have figured out a formula for having good performance and moving units. It's not spread evenly though.
In enterprise and consumer software there's not a lot of motivation to consider performance criteria in requirements: we tend to design for what users will tolerate and give ourselves as much wiggle room as possible... because these systems tend to be complex and we want to ship changes/features continually. Every change is a liability that can affect performance and user satisfaction. So we make sure we have enough room in our budget for an error rate.
Much different compared to designing and developing software behind closed doors until it's, "ready."
Well, yes. It's an economic problem (which is to say, it's a resource allocation problem). Do you have someone spend extra time optimising your software or do you have them produce more functionality. If the latter generates more cash then that's what you'll get them to do. If the former becomes important to your cashflow then you'll get them to do that.
> Do you have someone spend extra time optimising your software or do you have them produce more functionality
Depends. In general, I'd rather have devs optimize the software rather than adding new features just for the sake of change.
I don't use most of the new features in macOS, Windows, or Android. I mostly want an efficient environment to run my apps and security improvements. I'm not that happy about many of the improvements in macOS (eg the settings app).
Same with design software. I don't use most of the new features introduced by Adobe. I'd be happy using Illustrator or Photoshop from 10 years ago. I want less bloat, not more.
I also do audio and music production. Here I do want new features because the workflow is still being improved but definitely not at the cost of efficiency.
Regarding code editors I'm happy with VSCode in terms of features. I don't need anything else. I do want better LSPs but these are not part of the editor core. I wish VSCode was faster and consumed less memory though.
It's the kind of economics that shifts the financial debt to accumulating waste, and technical debt, which is paid for by someone else. It's basically stealing. There are --of course-- many cases in which thorough optimizing doesn't make much sense, but the idea of just adding servers instead of rewriting is a sad state of affairs.
It doesn't seem like stealing to me? Highly optimised software generally takes more effort to create and maintain.
The tradeoff is that we get more software in general, and more features in that software, i.e. software developers are more productive.
I guess on some level we can feel that it's morally bad that adding more servers or using more memory on the client is cheaper than spending developer time but I'm not sure how you could shift that equilibrium without taking away people's freedom to choose how to build software?
I feel like the argument is similar to that of all corporate externality pushes.
For example "polluting the air/water, requiring end-users to fill landfills with packaging and planned obscolescence" allows a company to more cheaply offer more products to you as a consumer.. but now everyone collectively has to live in a more polluted world with climate change and wasted source material converted to expensive and/or dangerous landfills and environmental damage from fracking and strip mining.
But that's still not different from theft. A company that sells you things that "Fell off the back of a truck" is in a position to offer you lower costs and greater variety, as well. Aren't they?
Our shared resources need to be properly managed: neither siphoned wastefully nor ruined via polution. That proper management is a cost, and it either has to be borne by those using the resources and creating the waste, or it is theft of a shared resource and tragedy of the commons.
This is exactly right. Why should the company pay an extra $250k in salary to "optimize" when they can just offload that salary to their customers' devices instead? The extra couple of seconds, extra megabytes of bandwidth, and shittery of the whole ecosystem has been externalized to customers in search of ill-gotten profits.
It's like ignoring backwards compatibility. That is really cheap since all the cost is pushed to end-users (that have to relearn the UI) or second/third-party developers (that have to rewrite their client code to work with a new API). But it's OK since everyone is doing it and also without all those pointless rewrites many of us would not have a job.
> without all those pointless rewrites many of us would not have a job.
I hear arguments like this fairly often. I don't believe it's true.
Instead of having a job writing a pointless rewrite, you might have a job optimizing software. You might have a different career altogether. Having a job won't go away: what you do for your job will simply change.
This feels like hyperbole to me. Who is being stolen from here? Not the end user, they're getting the tradeoff of more features for a low price in exchange for less optimized software.
From what I’m seeing people do on their computers, it barely changed from what they’ve been doing on their pentium 4 one. But now, with Electron-based software and the generals state of Windows, you can’t recommend something older than 4 years. It’s hard to not see it as stealing when you have to buy a 1000+ laptop, when a 400 one could easily do the job if the software were a bit better.
It’s only a tradeoff for the user if the user find the added features useful.
Increasingly, this is not the case. My favorite example here is the Adobe Creative Suite, which for many users useful new features became far and few between some time ~15 years ago. For those users, all they got was a rather absurd degree of added bloat and slowness for essentially the same thing they were using in 2010. These users would’ve almost certainly been happier had 80-90% of the feature work done in that time instead been bug fixes and optimization.
would you spend 100 years writing the perfect editor optimizing every single function and continueously optimizing and when will it ever be complete? No you wouldn't. Do you use python or java or C? Obviously, that can be optimized if you wrote in assembly. Practice what you preach, otherwise you'd be stealing.
Not really stealing. You could off course build software that is more optimized and with the same features but at a higher cost. Would most buyers pay twice the price for a webb app that loads in 1 sec instead of 2? Probably not.
Efficiency is critical to my everyday life. For example, before I get up from my desk to grab a snack from the kitchen, I'll bring any trash/dishes with me to double the trip's benefits. I do this kind of thing often.
Optimizing software has a similar appeal. But when the problem is "spend hours of expensive engineering time optimizing the thing" vs "throw some more cheap RAM at it," the cheaper option will prevail. Sometimes, the problem is big enough that it's worth the optimization.
The market will decide which option is worth pursuing. If we get to a point where we've reached diminishing returns on throwing hardware at a problem, we'll optimize the software. Moore's Law may be slowing down, but evidently we haven't reached that point yet.
We've been able to run order matching engines for entire exchanges on a single thread for over a decade by this point.
I think this specific class of computational power - strictly serialized transaction processing - has not grown at the same rate as other metrics would suggest. Adding 31 additional cores doesn't make the order matching engine go any faster (it could only go slower).
If your product is handling fewer than several million transactions per second and you are finding yourself reaching for a cluster of machines, you need to back up like 15 steps and start over.
> We've been able to run order matching engines for entire exchanges on a single thread for over a decade by this point.
This is the bit that really gets me fired up. People (read: system “architects”) were so desperate to “prove their worth” and leave a mark that many of these systems have been over complicated, unleashing a litany of new issues. The original design would still satisfy 99% of use cases and these days, given local compute capacity, you could run an entire market on a single device.
You are only able to do that because you are doing simple processing on each transaction. If you had to do more complex processing on each transaction it wouldn't be possible to do that many. Though it is hard for me to imagine what more complex processing would be (I'm not in your domain)
HFT would love to do more complex calculations for some of their trades. They often make the compromise of using a faster algorithm that is known to be right only 60% of the time vs the better but slower algorithm that is right 90% of the time.
That is a different problem from yours though and so it has different considerations. In some areas I/O dominates, in some it does not.
In a perfect world, maximizing (EV/op) x (ops/sec) should be done for even user software. How many person-years of productivity are lost each year to people waiting for Windows or Office to start up, finish updating, etc?
I work in card payments transaction processing and IO dominates. You need to have big models and lots of data to authorize a transaction. And you need that data as fresh as possible and as close to your compute as possible... but you're always dominated by IO. Computing the authorization is super cheap.
Tends to scale vertically rather than horizontally. Give me massive caches and wide registers and I can keep them full. For now though a lot of stuff is run on commodity cloud hardware so... eh.
Why can you not match orders in parallel using logarithmic reduction, the same way you would sort in parallel? Is it that there is not enough other computation being done other than sorting by time and price?
"The world" runs on _features_ not elegant, fast, or bug free software. To the end user, there is no difference between a lack of a feature, and a bug. Nor is there any meaningful difference between software taking 5 minutes to complete something because of poor performance, compared to the feature not being there and the user having to spend 5 minutes completing the same task manually. It's "slow".
If you keep maximizing value for the end user, then you invariably create slow and buggy software. But also, if you ask the user whether they would want faster and less buggy software in exchange for fewer features, they - surprise - say no. And even more importantly: if you ask the buyer of software, which in the business world is rarely the end user, then they want features even more, and performance and elegance even less.
Given the same feature set, a user/buyer would opt for the fastest/least buggy/most elegant software. But if it lacks any features - it loses. The reason to keep software fast and elegant is because it's the most likely path to be able to _keep_ adding features to it as to not be the less feature rich offering. People will describe the fast and elegant solution with great reviews, praising how good it feels to use. Which might lead people to think that it's an important aspect. But in the end - they wouldn't buy it at all if it didn't do what they wanted. They'd go for the slow frustrating buggy mess if it has the critical feature they need.
Almost all of my nontechnical friends and family members have at some point complained about bloated and overly complicated software that they are required to use.
Also remember that Microsoft at this point has to drag their users kicking and screaming into using the next Windows version. If users were let to decide for themselves, many would have never upgraded past Windows XP. All that despite all the pretty new features in the later versions.
I'm fully with you that businesses and investors want "features" for their own sake, but definitely not users.
Agree WRT the tradeoff between features and elegance.
Although, I do wonder if there’s an additional tradeoff here. Existing users, can apparently do what they need to do with the software, because they are already doing it. Adding a new feature might… allow them to get rid of some other software, or do something new (but, that something new must not be so earth shattering, because they didn’t seek out other software to do it, and they were getting by without it). Therefore, I speculate that existing users, if they really were introspective, would ask for those performance improvements first. And maybe a couple little enhancements.
Potential new users on the other hand, either haven’t heard of your software yet, or they need it to do something else before they find it useful. They are the ones that reasonably should be looking for new features.
So, in “features vs performance” decision is also a signal about where the developers’ priorities lay: adding new users or keeping old ones happy. So, it is basically unsurprising that:
* techies tend to prefer the latter—we’ve played this game before, and know we want to be the priority for the bulk of the time using the thing, not just while we’re being acquired.
* buggy slow featureful software dominates the field—this is produced by companies that are prioritizing growth first.
* history is littered with beautiful, elegant software that users miss dearly, but which didn’t catch on broadly enough to sustain the company.
However, the tradeoff is real in both directions; most people spend most of their time as users instead of potential users. I think this is probably a big force behind the general perception that software and computers are incredibly shit nowadays.
Perfectly put. People who try to argue that more time should be spent on making software perform better probably aren't thinking about who's going to pay for that.
For the home/office computer, the money spent on more RAM and a better CPU enables all software it runs to be shipped more cheaply and with more features.
You've got it totally backwards. Companies push features onto users who do not want them in order to make sales through forced upgrades because the old version is discontinued.
If people could, no one would ever upgrade anything anymore. Look at how hard MS has to work to force anyone to upgrade. I have never heard of anyone who wanted a new version of Windows, Office, Slack, Zoom, etc.
This is also why everything (like Photoshop) is being forced into the cloud. The vast majority of people don't want the new features that are being offered. Including buyers at businesses. So the answer to keep revenue up is to force people to buy regardless of what features are being offered or not.
> You've got it totally backwards. Companies push features onto users who do not want them in order to make sales through forced upgrades because the old version is discontinued.
I think this is more a consumer perspective than a B2B one. I'm thinking about the business case. I.e. businesses purchase software (or has bespoke software developed). Then they pay for fixes/features/improvements. There is often a direct communication between the buyer and the developer (whether it's off-the shelf, inhouse or made to spec). I'm in this business and the dialog is very short "great work adding feature A. We want feature B too now. And oh the users say the software is also a bit slow can you make it go faster? Me: do you want feature B or faster first? Them (always) oh feature B. That saves us man-weeks every month". Then that goes on for feature C, D, E, ...Z.
In this case, I don't know how frustrated the users are, because the customer is not the user - it's the users' managers.
In the consumer space, the user is usually the buyer. That's one huge difference. You can choose the software that frustrates you the least, perhaps the leanest one, and instead have to do a few manual steps (e.g. choose vscode over vs, which means less bloated software but also many fewer features).
What cost? The hardware is dirt cheap. Programmers aren't cheap. The value of being able to use cheap software on cheap hardware is basically not having to spend a lot of time optimizing things. Time is the one thing that isn't cheap here. So there's a value in shipping something slightly sub optimal sooner rather than something better later.
> Except your browser taking 180% of available ram maybe.
For most business users, running the browser is pretty much the only job of the laptop. And using virtual memory for open tabs that aren't currently open is actually not that bad. There's no need to fit all your gazillion tabs into memory; only the ones you are looking at. Browsers are pretty good at that these days. The problem isn't that browsers aren't efficient but that we simply push them to the breaking content with content. Content creators simply expand their resource usage whenever browsers get optimized. The point of optimization is not saving cost on hardware but getting more out of the hardware.
The optimization topic triggers the OCD of a lot of people and sometimes those people do nice things. John Carmack built his career when Moore's law was still on display. Everything he did to get the most out of CPUs was super relevant and cool but it also dated in a matter of a few years. One moment we were running doom on simple 386 computers and the next we were running Quake and Unreal with shiny new Voodoo GPUs on a Pentium II pro. I actually had the Riva 128 as my first GPU, which was one of the first products that Nvidia shipped running Unreal and other cool stuff. And while CPUs have increased enormously in performance, GPUs have increased even more by some ridiculous factor. Nvidia has come a long way since then.
I'm not saying optimization is not important but I'm just saying that compute is a cheap commodity. I actually spend quite a bit of time optimizing stuff so I can appreciate what that feels like and how nice it is when you make something faster. And sometimes that can really make a big difference. But sometimes my time is better spent elsewhere as well.
Right, and that's true of end users as well. It's just not taken into account by most businesses.
I think your take is pretty reasonable, but I think most software is too far towards slow and bloated these days.
Browsers are pretty good, but developers create horribly slow and wasteful web apps. That's where the optimization should be done. And I don't mean they should make things as fast as possible, just test on an older machine that a big chunk of the population might still be using, and make it feel somewhat snappy.
The frustrating part is that most web apps aren't really doing anything that complicated, they're just built on layers of libraries that the developers don't understand very well. I don't really have a solution to any of this, I just wish developers cared a little bit more than they do.
My daily drivers at home are an i3-540 and and Athlon II X4. Every time something breaks down, I find it much cheaper to just buy a new part than to buy a whole new kit with motherboard/CPU/RAM.
I'm a sysadmin, so I only really need to log into other computers, but I can watch videos, browse the web, and do some programming on them just fine. Best ROI ever.
Can you watch H.265 videos? That's the one limitation I regularly hit on my computer (that I got for free from some company, is pretty old, but is otherwise good enough that I don't think I'll replace it until it breaks). I don't think I can play videos recorded on modern iPhones.
If we're talking numbers, there are many, many more embedded systems than general purpose computers. And these are mostly built on ancient process nodes compared to the cutting edge we have today; the shiny octa-cores on our phones are supported by a myriad of ancilliary chips that are definitely not cutting edge.
We aren't talking numbers, though. Who cares about embedded? I mean that literally. This is computation invisible by design. If that were sufficient we wouldn't have smartphones.
Modern planes do not, and many older planes have been retrofitted, in whole or in part, with more modern computers.
Some of the specific embedded systems (like the sensors that feed back into the main avionics systems) may still be using older CPUs if you squint, but it's more likely a modern version of those older designs.
IBM PowerPC 750X apparently, which was the CPU the Power Mac G3 used back in the day. Since it's going into space it'll be one of the fancy radiation-hardened versions which probably still costs more than your car though, and they run four of them in lockstep to guard against errors.
Ha! What's special about rad-hard chips is that they're old designs. You need big geometries to survive cosmic rays, and new chips all have tiny geometries.
So there are two solutions:
1. Find a warehouse full of 20-year old chips.
2. Build a fab to produce 20-year old designs.
Both approaches are used, and both approaches are expensive. (Approach 1 is expensive because as you eventually run out of chips they become very, very valuable and you end up having to build a fab anyway.)
There's more to it than just big geometries but that's a major part of the solution.
I'm not sure what artemis or orion are, but you can blame defense contractors for this. Nobody ever got fired for hiring IBM or Lockheed, even if they deliver unimpressive results at massive cost.
I don't disagree that the engineering can be justified. But you don't need custom hardware to achieve radiation hardening, much less hiring fucking IBM.
And to be clear, I love power chips. I remain very bullish about the architecture. But as a taxpayer reading this shit just pisses me off. Pork-fat designed to look pro-humanity.
One of the things I think about sometimes, a specific example rather than a rebuttal to Carmack.
The Electron Application is somewhere between tolerated and reviled by consumers, often on grounds of performance, but it's probably the single innovation that made using my Linux laptop in the workplace tractable. And it is genuinely useful to, for example, drop into a MS Teams meeting without installing.
So, everyone laments that nothing is as tightly coded as Winamp anymore, without remembering the first three characters.
I work on a laptop from 2014. An i7 4xxx with 32 GB RAM and 3 TB SSD. It's OK for Rails and for Django, Vue, Slack, Firefox and Chrome. Browsers and interpreters got faster. Luckily there was pressure to optimize especially in browsers.
I was working as a janitor, moonlighting as an IT director, in 2010. Back then I told the business that laptops for the past five years (roughly since Nehalem) have plenty of horsepower to run spreadsheets (which is basically all they do) with two cores, 16 GB of RAM, and a 500GB SATA SSD. A couple of users in marketing did need something a little (not much) beefier. Saved a bunch of money by not buying the latest-and-greatest laptops.
I don't work there any more. Today I am convinced that's true today: those computers should still be great for spreadsheets. Their workflow hasn't seriously changed. It's the software that has. If they've continued with updates (can it even "run" MS Windows 10 or 11 today? No idea, I've since moved on to Linux) then there's a solid chance that the amount of bloat and especially move to online-only spreadsheets would tank their productivity.
Further, the internet at that place was terrible. The only offerings were ~16Mbit asynchronous DSL (for $300/mo just because it's a "business", when I could get the same speed for $80/mo at home), or Comcast cable 120Mbit for $500/mo. 120Mbit is barely enough to get by with an online-only spreadsheet, and 16Mbit definitely not. But worse: if internet goes down, then the business ceases to function.
This is the real theft that another commenter [0] mentioned that I wholeheartedly agree with. There's no reason whatsoever that a laptop running spreadsheets in an office environment should require internet to edit and update spreadsheets, or crazy amounts of compute/storage, or even huge amounts of bandwidth.
Computers today have zero excuse for terrible performance except only to offload costs onto customers - private persons and businesses alike.
I have been thinking about this a lot ever since I played a game called "Balatro". In this game nothing extraordinary happens in terms of computing - some computations get done, some images are shuffled around on the screen, the effects are sparse. The hardware requirements aren't much by modern standards, but still, this game could be ported 1:1 to a machine with Pentium II with a 3dfx graphics card. And yet it demands so much more - not a lot by today standards, but still. I am tempted to try to run it on a 2010 netbook to see if it even boots up.
It is made in lua using love2d. That helped the developers and comes with a cost in minimal requirements (even if they aren't much for a game released in 2024).
The goal isn't optimized code, it is utility/value prop. The question then is how do we get the best utility/value given the resources we have. This question often leads to people believing optimization is the right path since it would use fewer resources and therefore the value prop would be higher. I believe they are both right and wrong. For me, almost universally, good optimization ends up simplifying things as it speeds things up. This 'secondary' benefit, to me, is actually the primary benefit. So when considering optimizations I'd argue that performance gains are a potential proxy for simplicity gains in many cases so putting a little more effort into that is almost always worth it. Just make sure you actually are simplifying though.
You're just replacing one favorite solution with another. Would users want simplicity at the cost of performance? Would they pay more for it? I don't think so.
You're right that the crux of it is that the only thing that matters is pure user value and that it comes in many forms. We're here because development cost and feature set provide the most obvious value.
Exactly. Yes I understand the meaning behind it, but the line gets drummed into developers everywhere, the subtleties and real meaning are lost, and every optimisation- or efficiency-related question on Stack Overflow is met with cries of "You're doing it wrong! Don't ever think about optimising unless you're certain you have a problem!" This habit of pushing it to extremes, inevitably leads to devs not even thinking about making their software efficient. Especially when they develop on high-end hardware and don't test on anything slower.
Perhaps a classic case where a guideline, intended to help, ends up causing ill effects by being religiously stuck to at all times, instead of fully understanding its meaning and when to use it.
A simple example comes to mind, of a time I was talking to a junior developer who thought nothing of putting his SQL query inside a loop. He argued it didn't matter because he couldn't see how it would make any difference in that (admittedly simple) case, to run many queries instead of one. To me, it betrays a manner of thinking. It would never have occurred to me to write it the slower way, because the faster way is no more difficult or time-consuming to write. But no, they'll just point to the mantra of "premature optimisation" and keep doing it the slow way, including all the cases where it unequivocally does make a difference.
Is there or could we make an iPhone-like that runs 100x slower than conventional phones but uses much less energy, so it powers itself on solar? It would be good for the environment and useful in survival situations.
Or could we make a phone that runs 100x slower but is much cheaper? If it also runs on solar it would be useful in third-world countries.
Processors are more than fast enough for most tasks nowadays; more speed is still useful, but I think improving price and power consumption is more important. Also cheaper E-ink displays, which are much better for your eyes, more visible outside, and use less power than LEDs.
We have much hardware on the secondary market (resale) that's only 2-3x slower than pristine new primary market devices. It is cheap, it is reuse, and it helps people save in a hyper-consumerist society. The common complaint is that it doesn't run bloated software anymore. And I don't think we can make non-bloated software for a variety of reasons.
As a video game developer, I can add some perspective (N=1 if you will). Most top-20 game franchises spawned years ago on much weaker hardware, but their current installments demand hardware not even a few years old (as recommended/intended way to play the game). This is due to hyper-bloating of software, and severe downskilling of game programmers in the industry to cut costs. The players don't often see all this, and they think the latest game is truly the greatest, and "makes use" of the hardware. But the truth is that aside from current-generation graphics, most games haven't evolved much in the last 10 years, and current-gen graphics arrived on PS4/Xbox One.
Ultimately, I don't know who or what is the culprit of all this. The market demands cheap software. Games used to cost up to $120 in the 90s, which is $250 today. A common price point for good quality games was $80, which is $170 today. But the gamers absolutely decry any game price increases beyond $60. So the industry has no option but to look at every cost saving, including passing the cost onto the buyer through hardware upgrades.
Ironically, upgrading a graphics card one generation (RTX 3070 -> 4070) costs about $300 if the old card is sold and $500 if it isn't. So gamers end up paying ~$400 for the latest games every few years and then rebel against paying $30 extra per game instead, which could very well be cheaper than the GPU upgrade (let alone other PC upgrades), and would allow companies to spend much more time on optimization. Well, assuming it wouldn't just go into the pockets of publishers (but that is a separate topic).
It's an example of Scott Alexander's Moloch where it's unclear who could end this race to the bottom. Maybe a culture shift could, we should perhaps become less consumerist and value older hardware more. But the issue of bad software has very deep roots. I think this is why Carmack, who has a practically perfect understanding of software in games, doesn't prescribe a solution.
One only needs to look at Horizon: Zero Dawn to note that the truth of this is deeply uneven across the games industry. World streaming architectures are incredible technical achievements. So are moddable engines. There are plenty of technical limits being pushed by devs, it's just not done at all levels.
You are right, but you picked a game by a studio known for its technical expertise, with plenty of points to prove about quality game development. I'd like them to be the future of this industry.
But right now, 8-9/10 game developers and publishers are deeply concerned with cash and rather unconcerned by technical excellence or games as a form of interactive art (where, once again, Guerrilla and many other Sony studios are).
Yes, it's possible and very simple. Lower the frequency (dramatically lowers power usage), fewer cores, few threads, etc. The problem is, we don't know what we need. What if a great new apps comes out (think LLM); you'll be complaining your phone is too slow to run it.
> Or could we make a phone that runs 100x slower but is much cheaper? I
Probably not - a large part of the cost is equipment and R&D. It doesn't cost much more to build the most complex CPU vs a 6502 - there is only a tiny bit more silicon and chemicals. What is costly is the R&D behind the chip, and the R&D behind the machines that make the chips. If intel fired all their R&D engineers who were not focused on reducing manufacturing costs they could greatly reduce the price of their CPUs - until AMD released a next generation that is much better. (this is more or less what Henry Ford did with the model-T - he reduced costs every year until his competition adding features were enough better that he couldn't sell his cars.
Perfect parallel to the madness that is AI. With even modest sustainability incentives, the industry wouldn't have pulverized a trillion dollar on training models nobody uses to dominate the weekly attention fight and fundraising game.
Sadly software optimization doesn't offer enough cost savings for most companies to address consumer frustration. However, for large AI workloads, even small CPU improvements yield significant financial benefits, making optimization highly worthwhile.
Obviously, the world ran before computers. The more interesting part of this is what would we lose if we knew there were no new computers, and while I'd like to believe the world would put its resources towards critical infrastructure and global logistics, we'd probably see the financial sector trying to buy out whatever they could, followed by any data center / cloud computing company trying to lock all of the best compute power in their own buildings.
I think optimizations only occur when the users need them. That is why there are so many tricks for game engine optimization and compiling speed optimization. And that is why MSFT could optimize the hell out of VSCode.
People simply do not care about the rest. So there will be as little money spent on optimization as possible.
The priority should be safety, not speed. I prefer an e.g. slower browser or OS that isn't ridden with exploits and attack vectors.
Of course that doesn't mean everything should be done in JS and Electron as there's a lot of drawbacks to that. There exists a reasonable middle ground where you get e.g. memory safety but don't operate on layers upon layers of heavy abstraction and overhead.
He mentions the rate of innovation would slow down which I agree with. But I think that even 5% slower innovation rate would delay the optimizations we can do or even figure out what we need to optimize through centuries of computer usage and in the end we'd be less efficient because we'd be slower at finding efficiencies. Low adoption rate of new efficiencies is worse than high adoption rate of old efficiencies is I guess how to phrase it.
If Cadence for example releases every feature 5 years later because they spend more time optimizing them, it's software after all, how much will that delay semiconductor innovations?
The idea of a hand me down computer made of brass and mahogany still sounds ridiculous because it is, but we're nearly there in terms of Moore's law. We have true 2nm within reach and then the 1nm process is basically the end of the journey. I expect 'audiophile grade' PCs in the 2030s and then PCs become works of art, furniture, investments, etc. because they have nowhere to go.
The increasing longevity of computers has been impressing me for about 10 years.
My current machine is 4 years old. It's absolutely fine for what I do. I only ever catch it "working" when I futz with 4k 360 degree video (about which: fine). It's a M1 Macbook Pro.
I traded its predecessor in to buy it, so I don't have that one anymore; it was a 2019 model. But the one before that, a 2015 13" Intel Macbook Pro, is still in use in the house as my wife's computer. Keyboard is mushy now, but it's fine. It'd probably run faster if my wife didn't keep fifty billion tabs open in Chrome, but that's none of my business. ;)
The one behind that one, purchased in 2012, is also still in use as a "media server" / ersatz SAN. It's a little creaky and is I'm sure technically a security risk given its age and lack of updates, but it RUNS just fine.
I already run on older hardware and most people can if they chose to - haven't bought a new computer since 2005. Perhaps the OS can adopt a "serverless" model where high computational tasks are offloaded as long as there is sufficient bandwidth.
Minimalism is excellent. As others have mentioned, using languages that are more memory safe (by assumption the language is wrote in such a way) may be worth the additional complexity cost.
But surely with burgeoning AI use efficiency savings are being gobbled up by the brute force nature of it.
Maybe model training and the likes of hugging face can avoid different groups trying to reinvent the same AI wheel using more resources than a cursory search of a resource.
I'm going to be pretty blunt. Carmack gets worshiped when he shouldn't be. He has several bad takes in terms of software. Further, he's frankly behind the times when it comes to the current state of the software ecosystem.
I get it, he's legendary for the work he did at id software. But this is the guy who only like 5 years ago was convinced that static analysis was actually a good thing for code.
He seems to have a perpetual view on the state of software. Interpreted stuff is slow, networks are slow, databases are slow. Everyone is working with Pentium 1s and 2MB of ram.
None of these are what he thinks they are. CPUs are wicked fast. Interpreted languages are now within a single digit multiple of natively compiled languages. Ram is cheap and plentiful. Databases and networks are insanely fast.
Good on him for sharing his takes, but really, he shouldn't be considered a "thought leader". I've noticed his takes have been outdated for over a decade.
I'm sure he's a nice guy, but I believe he's fallen into a trap that many older devs do. He's overestimating what the costs of things are because his mental model of computing is dated.
Tell me about it. Web development has only become fun again at my place since upgrading from Intel Mac to M4 Mac.
Just throw in Slack chat, vscode editor in Electron, Next.js stack, 1-2 docker containers, one browser and you need top notch hardware to run it fluid (Apple Silicon is amazing though). I'm doing no fancy stuff.
Chat, editor in a browser and docker don't seem the most efficient thing if put all together.
100% agree with Carmack. There was a craft in writing software that I feel has been lost with access to inexpensive memory and compute. Programmers can be inefficient because they have all that extra headroom to do so which just contributes to the cycle of needing better hardware.
Software development has been commoditized and is directed by MBA's and others who don't see it as a craft. The need for fast project execution is above the craft of programming, hence, the code is bug-riddled and slow.
There are some niche areas (vintage,pico-8, arduino...) where people can still practise the craft, but that's just a hobby now. When this topic comes up I always think about Tarkovsky's Andrei Rublev movie, the artist's struggle.
I'm already moving in this direction in my personal life. It's partly nostalgia but it's partly practical. It's just that work requires working with people who only use what hr and it hoists on them, then I need a separate machine for that.
Carmack is a very smart guy and I agree with the sentiment behind his post, but he's a software guy. Unfortunately for all of us hardware has bugs, sometimes bugs so bad that you need to drop 30-40% of your performance to mitigate them - see Spectre, Meltdown and friends.
I don't want the crap Intel has been producing for the last 20 years, I want the ARM, RiscV and AMD CPUs from 5 years in the future. I don't want a GPU by Nvidia that comes with buggy drivers and opaque firmware updates, I want the open source GPU that someone is bound to make in the next decade. I'm happy 10gb switches are becoming a thing in the home, I don't want the 100 mb hubs from the early 2000s.
It could also run on much less current hardware if efficiency was a priority. Then comes the AI bandwagon and everyone is buying loads of new equipment to keep up with the Jones.
This is a double edge sword problem, but I think what people are glazing over with the compute power topic is power efficiency. One thing I struggle with home labing old gaming equipment is the consideration to the power efficiency of new hardware. Hardly a valid comparison, but I can choose to recycle my Ryzen 1700x with a 2080ti for a media server that will probably consume a few hundred watts, or I can get a M1 that sips power. The double edge sword part is that Ryzen system becomes considerably more power efficient running proxmox or ubuntu server vs a windows client. We as a society choose our niche we want to leverage and it swings with and like economics, strapped for cash, choose to build more efficient code; no limits, buy the horsepower to meet the needs.
Imagine software engineering was like real engineering, where the engineers had licensing and faced fines or even prison for negligence. How much of the modern worlds software would be tolerated?
Very, very little.
If engineers handled the Citicorp center the same way software engineers did, the fix would have been to update the documentation in Confluence to not expose the building to winds and then later on shrug when it collapsed.
Yeah, having browsers the size and complexities of OSs is just one of many symptoms. I intimate at this concept in a grumbling, helpless manner somewhat chronically.
There's a lot today that wasn't possible yesterday, but it also sucks in ways that weren't possible then.
I foresee hostility for saying the following, but it really seems most people are unwilling to admit that most software (and even hardware) isn't necessarily made for the user or its express purpose anymore. To be perhaps a bit silly, I get the impression of many services as bait for telemetry and background fun.
While not an overly earnest example, looking at Android's Settings/System/Developer Options is pretty quick evidence that the user is involved but clearly not the main component in any respect. Even an objective look at Linux finds manifold layers of hacks and compensation for a world of hostile hardware and soft conflict. It often works exceedingly well, though as impractical as it may be to fantasize, imagine how badass it would be if everything was clean, open and honest. There's immense power, with lots of infirmities.
I've said that today is the golden age of the LLM in all its puerility. It'll get way better, yeah, but it'll get way worse too, in the ways that matter.[1]
Really no notes on this. Carmack hit both sides of the coin:
- the way we do industry-scale computing right now tends to leave a lot of opportunity on the table because we decouple, interpret, and de-integrate where things would be faster and take less space if we coupled, compiled, and made monoliths
- we do things that way because it's easier to innovate, tweak, test, and pivot on decoupled systems that isolate the impact of change and give us ample signal about their internal state to debug and understand them
I mean, if you put win 95 on a period appropriate machine, you can do office work easily. All that is really driving computing power is the web and gaming. If we weren't doing either of those things as much, I bet we could all quite happily use machines from the 2000s era
Let's keep the CPU efficiency golf to Zachtronics games, please.
I/O is almost always the main bottleneck. I swear to god 99% of developers out there only know how to measure cpu cycles of their code so that's the only thing they optimize for. Call me after you've seen your jobs on your k8s clusters get slow because all of your jobs are inefficiently using local disk and wasting cycles waiting in queue for reads/writes. Or your DB replication slows down to the point that you have to choose between breaking the mirror and stop making money.
And older hardware consumes more power. That's the main driving factor between server hardware upgrades because you can fit more compute into your datacenter.
I agree with Carmack's assessment here, but most people reading are taking the wrong message away with them.
There's servers and there's all of the rest of consumer hardware.
I need to buy a new phone every few years simply because the manufacturer refuses to update it. Or they add progressively more computationally expensive effects that makes my old hardware crawl. Or the software I use only supports 2 old version of macOS. Or Microsoft decides that your brand new cpu is no good for win 11 because it's lacking a TPM. Or god help you if you try to open our poorly optimized electron app on your 5 year old computer.
People say this all the time, and usually it's just an excuse not to optimize anything.
First, I/O can be optimized. It's very likely that most servers are either wasteful in the number of requests they make, or are shuffling more data around than necessary.
Beyond that though, adding slow logic on top of I/O latency only makes things worse.
Also, what does I/O being a bottleneck have to do with my browser consuming all of my RAM and using 120% of my CPU? Most people who say "I/O is the bottleneck" as a reason to not optimize only care about servers, and ignore the end users.
I/O _can_ be optimized. I know someone who had this as their fulltime job at Meta. Outside of that nobody is investing in it though.
I'm a platform engineer for a company with thousands of microservices. I'm not thinking on your desktop scale. Our jobs are all memory hogs and I/O bound messes. Across all of the hardware we're buying we're using maybe 10% CPU. Peers I talk to at other companies are almost universally in the same situation.
I'm not saying don't care about CPU efficiency, but I encounter dumb shit all the time like engineers asking us to run exotic new databases with bad licensing and no enterprise features just because it's 10% faster when we're nowhere near experiencing those kinds of efficiency problems. I almost never encounter engineers who truly understand or care about things like resource contention/utilization. Everything is still treated like an infinite pool with perfect 100% uptime, despite (at least) 20 years of the industry knowing better.
There is an argument to be made that the market buys bug-filled, inefficient software about as well as it buys pristine software. And one of them is the cheapest software you could make.
It's similar to the "Market for Lemons" story. In short, the market sells as if all goods were high-quality but underhandedly reduces the quality to reduce marginal costs. The buyer cannot differentiate between high and low-quality goods before buying, so the demand for high and low-quality goods is artificially even. The cause is asymmetric information.
This is already true and will become increasingly more true for AI. The user cannot differentiate between sophisticated machine learning applications and a washing machine spin cycle calling itself AI. The AI label itself commands a price premium. The user overpays significantly for a washing machine[0].
It's fundamentally the same thing when a buyer overpays for crap software, thinking it's designed and written by technologists and experts. But IC1-3s write 99% of software, and the 1 QA guy in 99% of tech companies is the sole measure to improve quality beyond "meets acceptance criteria". Occasionally, a flock of interns will perform an "LGTM" incantation in hopes of improving the software, but even that is rarely done.
[0] https://www.lg.com/uk/lg-experience/inspiration/lg-ai-wash-e...
The dumbest and most obvious of realizations finally dawned on me after trying to build a software startup that was based on quality differentiation. We were sure that a better product would win people over and lead to viral success. It didn’t. Things grew, but so slowly that we ran out of money after a few years before reaching break even.
What I realized is that lower costs, and therefore lower quality, are a competitive advantage in a competitive market. Duh. I’m sure I knew and said that in college and for years before my own startup attempt, but this time I really felt it in my bones. It suddenly made me realize exactly why everything in the market is mediocre, and why high quality things always get worse when they get more popular. Pressure to reduce costs grows with the scale of a product. Duh. People want cheap, so if you sell something people want, someone will make it for less by cutting “costs” (quality). Duh. What companies do is pay the minimum they need in order to stay alive & profitable. I don’t mean it never happens, sometimes people get excited and spend for short bursts, young companies often try to make high quality stuff, but eventually there will be an inevitable slide toward minimal spending.
There’s probably another name for this, it’s not quite the Market for Lemons idea. I don’t think this leads to market collapse, I think it just leads to stable mediocrity everywhere, and that’s what we have.
> What I realized is that lower costs, and therefore lower quality,
This implication is the big question mark. It's often true but it's not at all clear that it's necessarily true. Choosing better languages, frameworks, tools and so on can all help with lowering costs without necessarily lowering quality. I don't think we're anywhere near the bottom of the cost barrel either.
I think the problem is focusing on improving the quality of the end products directly when the quality of the end product for a given cost is downstream of the quality of our tools. We need much better tools.
For instance, why are our languages still obsessed with manipulating pointers and references as a primary mode of operation, just so we can program yet another linked list? Why can't you declare something as a "Set with O(1) insert" and the language or its runtime chooses an implementation? Why isn't direct relational programming more common? I'm not talking programming in verbose SQL, but something more modern with type inference and proper composition, more like LINQ, eg. why can't I do:
These abstract over implementation details that we're constantly fiddling with in our end programs, often for little real benefit. Studies have repeatedly shown that humans can write less than 20 lines of correct code per day, so each of those lines should be as expressive and powerful as possible to drive down costs without sacrificing quality.I consider functional thinking and ability to use list comprehensions/LINQ/lodash/etc. to be fundamental skills in today's software world. The what, not the how!
Your argument makes sense. I guess now it's your time to shine and to be the change you want to see in the world.
[delayed]
I had the same realization but with car mechanics. If you drive a beater you want to spend the least possible on maintenance. On the other hand, if the car mechanic cares about cars and their craftsmanship they want to get everything to tip-top shape at high cost. Some other mechanics are trying to scam you and get the most amount of money for the least amount of work. And most people looking for car mechanics want to pay the least amount possible, and don't quite understand if a repair should be expensive or not. This creates a downward pressure on price at the expense of quality and penalizes the mechanics that care about quality.
Luckily for mechanics, the shortage of actual blue collar Hands-On labor is so small, that good mechanics actually can charge more.
The issue is that you have to be able to distinguish a good mechanic from a bad mechanic cuz they all get to charge a lot because of the shortage. Same thing for plumbing, electrical, HVAC, etc etc etc
But I understand your point.
Here in Atlanta Georgia, we have a ToyoTechs business. They perform maintenance on only Toyota-family automobiles. They have 2 locations, one for large trucks, one for cars, hybrids, and SUV-looking cars. Both are always filled up with customers. Some of whom drive hundreds of miles out of state to bring their vehicles exclusively there, whether the beater is a customized off-roader or a simple econobox with sentimental value.
Why? Because they are on a different incentive structure: non-comissioned payments for employees. They buy OEM parts, give a good warranty, charge fair prices, and they are always busy.
If this computer fad goes away, I'm going to open my own Toyota-only auto shop, trying to emulate them. They have 30 years of lead time on my hypothetical business, but the point stands: when people discover that high quality in this market, they stick to it closely.
I actually disagree. I think that people will pay more for higher quality software, but only if they know the software is higher quality.
It's great to say your software is higher quality, but the question I have is whether or not is is higher quality with the same or similar features, and second, whether the better quality is known to the customers.
It's the same way that I will pay hundreds of dollars for Jetbrains tools each year even though ostensibly VS Code has most of the same features, but the quality of the implementation greatly differs.
If a new company made their IDE better than jetbrains though, it'd be hard to get me to fork over money. Free trials and so on can help spread awareness.
The Lemon Market exists specifically when customers cannot tell, prior to receipt and usage, whether they are buying high quality or low quality.
I had the exact same experience trying to build a startup. The thing that always puzzled me was Apple: they've grown into one of the most profitable companies in the world on the basis of high-quality stuff. How did they pull it off?
Not on Macintosh. On iPod, iPhone and iPad.
All of those were marketed as just-barely-affordable consumer luxury goods. The physical design and the marketing were more important than the specs.
My wife has a perfume business. She makes really high quality extrait de parfums [1] with expensive materials and great formulations. But the market is flooded with eau de parfums -- which are far more diluted than a extrait -- using cheaper ingredients, selling for about the same price. We've had so many conversations about whether she should dilute everything like the other companies do, but you lose so much of the beauty of the fragrance when you do that. She really doesn't want to go the route of mediocrity, but that does seem to be what the market demands.
[1] https://studiotanais.com/
> But the market is flooded with eau de parfums -- which are far more diluted than a extrait -- using cheaper ingredients, selling for about the same price.
Has she tried raising prices? To signal that her product is highly quality and thus more expensive than her competition?
looks like they are trying native advertising first
I kind of see this in action when I'm comparing products on Amazon. When comparing two products on Amazon that are substantially the same, the cheaper one will have way more reviews. I guess this implies that it has captured the majority of the market.
I think this honestly has more to do with moslty Chinese sellers engaging in review fraud, which is a rampant problem. I'm not saying non-Chinese sellers don't engage in review fraud, but I have noticed a trend that around 98% of fake or fraudulently advertised products are of Chinese origin.
If it was just because it was cheap, we'd also see similar fraud from Mexican or Vietnamese sellers, but I don't really see that.
You have to have bought the item om Amazon to review right? So these reviewers buy and return, or how does it work?
Luxury items however seem to buck this trend, but this is all about conspicuous consumption.
There's an analogy with evolution. In that case, what survives might be the fittest, but it's not the fittest possible. It's the least fit that can possibly win. Anything else represents an energy expenditure that something else can avoid, and thus outcompete.
> There’s probably another name for this
Race to the bottom
> the market sells as if all goods were high-quality
The phrase "high-quality" is doing work here. The implication I'm reading is that poor performance = low quality. However, the applications people are mentioning in this comment section as low performance (Teams, Slack, Jira, etc) all have competitors with much better performance. But if I ask a person to pick between Slack and, say, a a fast IRC client like Weechat... what do you think the average person is going to consider low-quality? It's the one with a terminal-style UI, no video chat, no webhook integrations, and no custom avatars or emojis.
Performance is a feature like everything else. Sometimes, it's a really important feature; the dominance of Internet Explorer was destroyed by Chrome largely because it was so much faster than IE when it was released, and Python devs are quickly migrating to uv/ruff due to the performance improvement. But when you start getting into the territory of "it takes Slack 5 seconds to start up instead of 10ms", you're getting into the realm where very few people care.
You are comparing applications with wildly different features and UI. That's neither an argument for nor against performance as an important quality metric.
How fast you can compile, start and execute some particular code matters. The experience of using a program that performs well if you use it daily matters.
Performance is not just a quantitative issue. It leaks into everything, from architecture to delivery to user experience. Bad performance has expensive secondary effects, because we introduce complexity to patch over it like horizontal scaling, caching or eventual consistency. It limits our ability to make things immediately responsive and reliable at the same time.
> You are comparing applications with wildly different features and UI. That's neither an argument for nor against performance as an important quality metric.
Disagree, the main reason so many apps are using "slow" languages/frameworks is precisely that it allows them to develop way more features way quicker than more efficient and harder languages/frameworks.
> You are comparing applications with wildly different features and UI. That's neither an argument for nor against performance as an important quality metric.
I never said performance wasn't an important quality metric, just that it's not the only quality metric. If a slow program has the features I need and a fast program doesn't, the slow program is going to be "higher quality" in my mind.
> How fast you can compile, start and execute some particular code matters. The experience of using a program that performs well if you use it daily matters.
Like any other feature, whether or not performance is important depends on the user and context. Chrome being faster than IE8 at general browsing (rendering pages, opening tabs) was very noticeable. uv/ruff being faster than pip/poetry is important because of how the tools integrate into performance-sensitive development workflows. Does Slack taking 5-10 seconds to load on startup matter? -- to me not really, because I have it come up on boot and forget about it until my next system update forced reboot. Do I use LibreOffice or Word and Excel, even though LibreOffice is faster? -- I use Word/Excel because I've run into annoying compatibility issues enough times with LO to not bother. LibreOffice could reduce their startup and file load times to 10 picoseconds and I would still use MS Office, because I just want my damn documents to keep the same formatting my colleagues using MS Office set on their Windows computers.
Now of course I would love the best of all worlds; programs to be fast and have all the functionality I want! In reality, though, companies can't afford to build every feature, performance included, and need to pick and choose what's important.
> If a slow program has the features I need and a fast program doesn't, the slow program is going to be "higher quality" in my mind.
That’s irrelevant here, the fully featured product can also be fast. The overwhelming majority of software is slow because the company simply doesn’t care about efficiency. Google actively penalized slow websites and many companies still didn’t make it a priority.
> That’s irrelevant here, the fully featured product can also be fast.
So why is it so rarely the case? If it's so simple, why hasn't anyone recognized that Teams, Zoom, etc are all bloated and slow and made a hyper-optimized, feature-complete competitor, dominating the market?
Software costs money to build, and performance optimization doesn't come for free.
> The overwhelming majority of software is slow because the company simply doesn’t care about efficiency.
Don't care about efficiency at all, or don't consider it as important as other features and functionality?
Not being free upfront isn’t the same thing as expensive.
Zoom’s got 7,412 employees a small team of say 7 employees could make a noticeable difference here and the investment wouldn’t disappear, it would help drive further profits.
> Don't care about efficiency at all
Doesn’t care beyond basic functionality. Obviously they care if something takes an hour to load, but rarely do you see considerations for people running on lower hardware than the kind of machines you see at a major software company etc.
> Zoom’s got 7,412 employees a small team of say 7 employees could make a noticeable difference here
What would those 7 engineers specifically be working on? How did you pick 7? What part of the infrastructure would they be working on, and what kind of performance gains, in which part of the system, would be the result of their work?
What consumers care about is the customer facing aspects of the business. As such you’d benchmark Zoom on various clients/plugins (Windows, Max, Android, iOS) and create a never ending priority list of issues weighted by marketshare.
7 people was roughly chosen to be able to cover the relevant skills while also being a tiny fraction of the workforce. Such efforts run into diminishing returns, but the company is going to keep creating low hanging fruit.
If you're being honest, compare Slack and Teams not with weechat, but with Telegram. Its desktop client (along with other clients) is written by an actually competent team that cares about performance, and it shows. They have enough money to produce a native client written in C++ that has fantastic performance and is high quality overall, but these software behemoths with budgets higher than most countries' GDP somehow never do.
That's true. I meant it in a broader sense. Quality = {speed, function, lack of bugs, ergonomics, ... }.
I don't think it's necessarily a market for lemons. That involves information asymmetry.
Sometimes that happens with buggy software, but I think in general, people just want to pay less and don't mind a few bugs in the process. Compare and contrast what you'd have to charge to do a very thorough process with multiple engineers checking every line of code and many hours of rigorous QA.
I once did some software for a small book shop where I lived in Padova, and created it pretty quickly and didn't charge the guy - a friend - much. It wasn't perfect, but I fixed any problems (and there weren't many) as they came up and he was happy with the arrangement. He was patient because he knew he was getting a good deal.
I do think there is an information problem in many cases.
It is easy to get information of features. It is hard to get information on reliability or security.
The result is worsened because vendors compete on features, therefore they all make the same trade off of more features for lower quality.
There's likely some, although it depends on the environment. The more users of the system there are, the more there are going to be reviews and people will know that it's kind of buggy. Most people seem more interested in cost or features though, as long as they're not losing hours of work due to bugs.
Some vendors even make it impossible to get information. See Oracle and Microsoft forbidding publishing benchmarks for their SQL databases.
> the market buys bug-filled, inefficient software about as well as it buys pristine software
In fact, the realization is that the market buy support.
And that includes google and other companies that lack much of human support.
This is the key.
Support is manifested in many ways:
* There is information about it (docs, videos, blogs, ...)
* There is people that help me ('look ma, this is how you use google')
* There is support for the thing I use ('OS, Browser, Formats, ...')
* And for my way of working ('Excel let me do any app there...')
* And finally, actual people (that is the #1 thing that keep alive even the worst ERP on earth). This also includes marketing, sales people, etc. This are signal of having support even if is not exactly the best. If I go to enterprise and only have engineers that will be a bad signal, because well, developers then to be terrible at other stuff and the other stuff is support that matters.
If you have a good product, but there is not support, is dead.
And if you wanna fight a worse product, is smart to reduce the need to support for ('bugs, performance issues, platforms, ...') for YOUR TEAM because you wanna reduce YOUR COSTS but you NEED to add support in other dimensions!
The easiest for a small team, is just add humans (that is the MOST scarce source of support). After that, it need to be creative.
(also, this means you need to communicate your advantages well, because there is people that value some kind of support more than others 'have the code vs propietary' is a good example. A lot prefer the proprietary with support more than the code, I mean)
This really focuses on the single metric that can be used try ought lifetime of a product … a really good point that keeps unfolding.
Starting an OSS product - write good docs. Got a few enterprise people interested - “customer success person” is most important marketing you can do …
> This is already true and will become increasingly more true for AI. The user cannot differentiate between sophisticated machine learning applications and a washing machine spin cycle calling itself AI.
The user cannot but a good AI might itself allow the average user to bridge the information asymmetry. So as long as we have a way to select a good AI assistant for ourselves...
> The user cannot but a good AI might itself allow the average user to bridge the information asymmetry. So as long as we have a way to select a good AI assistant for ourselves...
In the end it all hinges on the users ability to assess the quality of the product. Otherwise, the user cannot judge whether an assistant recommends quality products and the assistant has an incentive to suggest poorly (e.g. sellout to product producers).
I have worked for large corporations that have foisted awful HR, expense reporting, time tracking and insurance "portals" that were so awful I had to wonder if anyone writing the checks had ever seen the product. I brought up the point several times that if my team tried to tell a customer that we had their project all done but it was full of as many bugs and UI nightmares as these back office platforms, I would be chastised, demoted and/or fired.
> I had to wonder if anyone writing the checks had ever seen the product
Probably not, and that's like 90% of the issue with enterprise software. Sadly enterprise software products are often sold based mainly on how many boxes they check in the list of features sent to management, not based on the actual quality and usability of the product itself.
If they think it is unimportant talk as if it is. It could be more polished. Do we want to impress them or just satisfy their needs?
Across three jobs, I have now seen three different HR systems from the same supplier which were all differently terrible.
The job it’s paid to do is satisfy regulation requirements.
What you're describing is Enterprise(tm) software. Some consultancy made tens of millions of dollars building, integrating, and deploying those things. This of course was after they made tens of millions of dollars producing reports exploring how they would build, integrate, and deploy these things and all the various "phases" involved. Then they farmed all the work out to cheap coders overseas and everyone went for golf.
Meanwhile I'm a founder of startup that has gotten from zero to where it is on probably what that consultancy spends every year on catering for meetings.
I used to work at a large company that had a lousy internal system for doing performance evals and self-reviews. The UI was shitty, it was unreliable, it was hard to use, it had security problems, it would go down on the eve of reviews being due, etc. This all stressed me out until someone in management observed, rather pointedly, that the reason for existence of this system is that we are contractually required to have such a system because the rules for government contracts mandate it, and that there was a possibility (and he emphasized the word possibility knowingly) that the managers actully are considering their personal knowledge of your performance rather than this performative documentation when they consider your promotions and comp adjustments. It was like being hit with a zen lightning bolt: this software meets its requirements exactly, and I can stop worrying about it. From that day on I only did the most cursory self-evals and minimal accomplishents, and my career progressed just fine.
You might not think about this as “quality” but it does have the quality of meeting the perverse functional requirements of the situation.
A hallmark of well-designed and well-written software is that it is easy to replace, where bug-ridden spaghetti-bowl monoliths stick around forever because nobody wants to touch them.
Just through pure Darwinism, bad software dominates the population :)
Even if end-users had the data to reasonably tie-break on software quality and performance, as I scroll my list of open applications not a single one of them can be swapped out with another just because it were more performant.
For example: Docker, iterm2, WhatsApp, Notes.app, Postico, Cursor, Calibre.
I'm using all of these for specific reasons, not for reasons so trivial that I can just use the best-performing solution in each niche.
So it seems obviously true that it's more important that software exists to fill my needs in the first place than it pass some performance bar.
I’m surprised in your list because it contains 3 apps that I’ve replaced specifically due to performance issues (docker, iterm and notes). I don’t consider myself particularly performance sensitive (at home) either. So it might be true that the world is even _less_ likely to pay for resource efficiency than we think.
Podman might have some limited API compatibility, but it's a completely different tool. Just off the bat it's not compatible with Skaffold, apparently.
That an alternate tool might perform better is compatible with the claim that performance alone is never the only difference between software.
Podman might be faster than Docker, but since it's a different tool, migrating to it would involve figuring out any number of breakage in my toolchain that doesn't feel worth it to me since performance isn't the only thing that matters.
What did you replace Docker with?
Podman
Except you’ve already swapped terminal for iterm, and orbstack already exists in part because docker left so much room for improvement, especially on the perf front.
I swapped Terminal for iTerm2 because I wanted specific features, not because of performance. iTerm2 is probably slower for all I care.
Another example is that I use oh-my-zsh which is adds weirdly long startup time to a shell session, but it lets me use plugins that add things like git status and kubectl context to my prompt instead of fiddling with that myself.
The user tolerance has changed as well because the web 2.0 "perpetual beta" and SaaS replacing other distribution models.
Also Microsoft has educated now several generations to accept that software fails and crashes.
Because "all software is the same", customers may not appreciate good software when they're used to live with bad software.
Is this really tolerance and not just monopolistic companies abusing their market position? I mean workers can't even choose what software they're allowed to use, those choices are made by the executive/management class.
> But IC1-3s write 99% of software, and the 1 QA guy in 99% of tech companies
I'd take this one step further, 99% of the software written isn't being done with performance in mind. Even here in HN, you'll find people that advocate for poor performance because even considering performance has become a faux pas.
That means you L4/5 and beyond engineers are fairly unlikely to have any sort of sense when it comes to performance. Businesses do not prioritize efficient software until their current hardware is incapable of running their current software (and even then, they'll prefer to buy more hardware is possible.)
The used car market is market for lemons because it is difficult to distinguish between a car that has been well maintained and a car close to breaking down. However, the new car market is decidedly not a market for lemons because every car sold is tested by the state, and reviewed by magazines and such. You know exactly what you are buying.
Software is always sold new. Software can increase in quality the same way cars have generally increased in quality over the decades. Creating standards that software must meet before it can be sold. Recalling software that has serious bugs in it. Punishing companies that knowingly sell shoddy software. This is not some deep insight. This is how every other industry operates.
I have that washing machine btw. I saw the AI branding and had a chuckle. I bought it anyway because it was reasonably priced (the washer was $750 at Costco).
In my case I bought it because LG makes appliances that fit under the counter if you don't have much space.
It bothered me the AI BS, but the price was good and the machine works fine.
You must be referring only to security bugs because you would quickly toss Excel or Photoshop if it were filled with performance and other bugs. Security bugs are a different story because users don't feel the consequences of the problem until they get hacked and even then, they don't know how they got hacked. There are no incentives for developers to actually care.
Developers do care about performance up to a point. If the software looks to be running fine on a majority of computers why continue to spend resources to optimize further? Principle of diminishing returns.
That's generally what I think as well. Yes, the world could run on older hardware, but you keep making faster and adding more CPU's so, why bother making the code more efficient?
Bad software is not cheaper to make (or maintain) in the long-term.
There are many exceptions.
1. Sometimes speed = money. Being the first to market, meeting VC-set milestones for additional funding, and not running out of runway are all things cheaper than the alternatives. Software maintenance costs later don't come close to opportunity costs if a company/project fails.
2. Most of the software is disposable. It's made to be sold, and the code repo will be chucked into a .zip on some corporate drive. There is no post-launch support, and the software's performance after launch is irrelevant for the business. They'll never touch the codebase again. There is no "long-term" for maintenance. They may harm their reputation, but that depends on whether their clients can talk with each other. If they have business or govt clients, they don't care.
3. The average tenure in tech companies is under 3 years. Most people involved in software can consider maintenance "someone else's problem." It's like the housing stock is in bad shape in some countries (like the UK) because the average tenure is less than 10 years. There isn't a person in the property's owner history to whom an investment in long-term property maintenance would have yielded any return. So now the property is dilapidated. And this is becoming a real nationwide problem.
4. Capable SWEs cost a lot more money. And if you hire an incapable IC who will attempt to future-proof the software, maintenance costs (and even onboarding costs) can balloon much more than some inefficient KISS code.
5. It only takes 1 bad engineering manager in the whole history of a particular piece of commercial software to ruin its quality, wiping out all previous efforts to maintain it well. If someone buys a second-hand car and smashes it into a tree hours later, was keeping the car pristinely maintained for that moment (by all the previous owners) worth it?
And so forth. What you say is true in some cases (esp where a company and its employees act in good faith) but not in many others.
"In the long run, we are all dead." -- Keynes
In my experiences, companies can afford to care about good software if they have extreme demands (e.g. military, finance) or amortize over very long timeframes (e.g. privately owned). It's rare for consumer products to fall into either of these categories.
That’s true - but finding good engineers who know how to do it is more expensive, at least in expenditures.
Maybe not, but that still leaves the question of who ends up bearing the actual costs of the bad software.
What does "make in the long-term" even mean? How do you make a sandwich in the long-term?
Bad things are cheaper and easier to make. If they weren't, people would always make good things. You might say "work smarter," but smarter people cost more money. If smarter people didn't cost more money, everyone would always have the smartest people.
Therefore brands as guardians of quality .
> The buyer cannot differentiate between high and low-quality goods before buying, so the demand for high and low-quality goods is artificially even. The cause is asymmetric information.
That's where FOSS or even proprietary "shared source" wins. You know if the software you depend on is generally badly or generally well programmed. You may not be able to find the bugs, but you can see how long the functions are, the comments, and how things are named. YMMV, but conscientiousness is a pretty great signal of quality; you're at least confident that their code is clean enough that they can find the bugs.
Basically the opposite of the feeling I get when I look at the db schemas of proprietary stuff that we've paid an enormous amount for.
IME, the problem is that FOSS consumer facing software is just about the worst in UX and design.
Technically correct, since you know it's bad because it's FOSS.
At least when talking about software that has any real world use case, and not development for developments sake.
the thing is - countries have set down legal rules preventing selling of food that actively harms the consumer(expired, known poisonous, addition of addictive substances(opiates) etc) to continue your food analogy.
in software the regulations can be boiled down to 'lol lmao' in pre-GDPR era. and even now i see GDPR violations daily.
I like to point out that since ~1980, computing power has increased about 1000X.
If dynamic array bounds checking cost 5% (narrator: it is far less than that), and we turned it on everywhere, we could have computers that are just a mere 950X faster.
If you went back in time to 1980 and offered the following choice:
I'll give you a computer that runs 950X faster and doesn't have a huge class of memory safety vulnerabilities, and you can debug your programs orders of magnitude more easily, or you can have a computer that runs 1000X faster and software will be just as buggy, or worse, and debugging will be even more of a nightmare.
People would have their minds blown at 950X. You wouldn't even have to offer 1000X. But guess what we chose...
Personally I think the 1000Xers kinda ruined things for the rest of us.
Except we've squandered that 1000x not on bounds checking but on countless layers of abstractions and inefficiency.
Am I taking crazy pills or are programs not nearly as slow as HN comments make them out to be? Almost everything loads instantly on my 2021 MacBook and 2020 iPhone. Every program is incredibly responsive. 5 year old mobile CPUs load modern SPA web apps with no problems.
The only thing I can think of that’s slow is Autodesk Fusion starting up. Not really sure how they made that so bad but everything else seems super snappy.
Slack, teams, vs code, miro, excel, rider/intellij, outlook, photoshop/affinity are all applications I use every day that take 20+ seconds to launch. My corporate VPN app takes 30 seconds to go from a blank screen to deciding if it’s going to prompt me for credentials or remember my login, every morning. This is on an i9 with 64GB ram, and 1GN fiber.
On the website front - Facebook, twitter, Airbnb, Reddit, most news sites, all take 10+ seconds to load or be functional, and their core functionality has regressed significantly in the last decade. I’m not talking about features that I prefer, but as an example if you load two links in Reddit in two different tabs my experience has been that it’s 50/50 if they’ll actually both load or if one gets stuck either way skeletons.
> are all applications I use every day that take 20+ seconds to launch.
I suddenly remembered some old Corel Draw version circa year 2005, which had loading screen enumerating random things it loaded and was computing until a final message "Less than a minute now...". It most often indeed lasted less than a minute to show interface :).
I'm on a four year old mid-tier laptop and opening VS Code takes maybe five seconds. Opening IDEA takes five seconds. Opening twitter on an empty cache takes perhaps four seconds and I believe I am a long way from their servers.
On my work machine slack takes five seconds, IDEA is pretty close to instant, the corporate VPN starts nearly instantly (although the Okta process seems unnecessarily slow I'll admit), and most of the sites I use day-to-day (after Okta) are essentially instant to load.
I would say that your experiences are not universal, although snappiness was the reason I moved to apple silicon macs in the first place. Perhaps Intel is to blame.
VS Code defers a lot of tasks to the background at least. This is a bit more visible in intellij; you seem to measure how long it takes to show its window, but how long does it take for it to warm up and finish indexing / loading everything, or before it actually becomes responsive?
Anyway, five seconds is long for a text editor; 10, 15 years ago, sublime text loaded and opened up a file in <1 second, and it still does today. Vim and co are instant.
Also keep in mind that desktop computers haven't gotten significantly faster for tasks like opening applications in the past years; they're more efficient (especially the M line CPUs) and have more hardware for specialist workloads like what they call AI nowadays, but not much innovation in application loading.
You use a lot of words like "pretty close to", "nearly", "essentially", but 10, 20 years ago they WERE instant; applications from 10, 20 years ago should be so much faster today than they were on hardware from back then.
I wish the big desktop app builders would invest in native applications. I understand why they go for web technology (it's the crossplatform GUI technology that Java and co promised and offers the most advanced styling of anything anywhere ever), but I wish they invested in it to bring it up to date.
Sublime Text isn't an IDE though so comparing it to VS Code is comparing grapes and apples. VS Code is doing a lot more.
I disagree. Vs code uses plugins for all its heavy lifting. Even a minimal plugin setup is substantially slower to load than sublime is, which can also have an LSP plugin.
>Anyway, five seconds is long for a text editor; 10, 15 years ago, sublime text loaded and opened up a file in <1 second, and it still does today. Vim and co are instant.
Do any of those do the indexing that cause the slowness? If not it's comparing apples to oranges.
Riders startup time isn’t including indexing. Indexing my entire project takes minutes but it does it in the background.
5 seconds is a lot for a machine with an M4 Pro, and tons of RAM and a very fast SSD.
There's native apps just as, if not more, complicated than VSCode that open faster.
The real problem is electron. There's still good, performant native software out there. We've just settled on shipping a web browser with every app instead.
There is snappy electron software out there too, to be fair. If you create a skeleton electron app it loads just fine. A perceptible delay but still quick.
The problem is when you load it and then react and all its friends, and design your software for everything to be asynchronous and develop it on a 0 latency connection over localhost with a team of 70 people where nobody is holistically considering “how long does it take from clicking the button to doing the thing I want it to do”
This is my third high end workstation computer in the last 5 years and my experience has been roughly consistent with.
My corporate vpn app is a disaster on so many levels, it’s an internally developed app as opposed to Okta or anything like that.
I would likewise say that your experience is not universal, and that in many circumstances the situation is much worse. My wife is running an i5 laptop from 2020 and her work intranet is a 60 second load time. Outlook startup and sync are measured in minutes including mailbox fetching. You can say this is all not the app developers fault, but the crunch that’s installed on her machine is slowing things down by 5 or 10x and that slowdown wouldn’t be a big deal if the apps had reasonable load times in the first place.
It's probably more so that any corporate Windows box has dozens of extra security and metrics agents interrupting and blocking every network request and file open and OS syscall installed by IT teams while the Macs have some very basic MDM profile applied.
For all the people who are doubting that applications are slow and that it must just be me - here [0] is a debugger that someone has built from the ground up that compiles, launches, attaches a debugger and hits a breakpoint in the same length of time that visual studio displays the splash screen for.
[0] https://x.com/ryanjfleury/status/1747756219404779845
That sounds like a corporate anti-virus slowing everything down to me. vscode takes a few seconds to launch for me from within WSL2, with extensions. IntelliJ on a large project takes a while I'll give you that, but just intelliJ takes only a few seconds to launch.
Vscode is actually 10 seconds, you’re right.
I have no corp antivirus or MDM on this machine, just windows 11 and windows defender.
All those things takes 4 seconds to launch or load on my M1. Not great, not bad.
HOW does Slack take 20s to load for you? My huge corporate Slack takes 2.5s to cold load.
I'm so dumbfounded. Maybe non-MacOS, non-Apple silicon stuff is complete crap at that point? Maybe the complete dominance of Apple performance is understated?
I use Windows alongside my Mac Mini, and I would say they perform pretty similarly (but M-chip is definitely more power efficient).
I don't use Slack, but I don't think anything takes 20 seconds for me. Maybe XCode, but I don't use it often enough to be annoyed.
Most likely the engineers at many startups only use apple computers themselves and therefore only optimize performance for those systems. It's a shame but IMO result of their incompetence and not result of some magic apple performance gains.
I guess you don't need to wrestle with Xcode?
Somehow the Xcode team managed to make startup and some features in newer Xcode versions slower than older Xcode versions running on old Intel Macs.
E.g. the ARM Macs are a perfect illustration that software gets slower faster than hardware gets faster.
After a very short 'free lunch' right after the Intel => ARM transition we're now back to the same old software performance regression spiral (e.g. new software will only be optimized until it feels 'fast enough', and that 'fast enough' duration is the same no matter how fast the hardware is).
Another excellent example is the recent release of the Oblivion Remaster on Steam (which uses the brand new UE5 engine):
On my somewhat medium-level PC I have to reduce the graphics quality in the Oblivion Remaster so much that the result looks worse than 14-year old Skyrim (especially outdoor environments), and that doesn't even result in a stable 60Hz frame rate, while Skyrim runs at a rock-solid 60Hz and looks objectively better in the outdoors.
E.g. even though the old Skyrim engine isn't by far as technologically advanced as UE5 and had plenty of performance issues at launch on a ca. 2010 PC, the Oblivion Remaster (which uses a "state of the art" engine) looks and performs worse than its own 14 years old predecessor.
I'm sure the UE5-based Oblivion remaster can be properly optimized to beat Skyrim both in looks and performance, but apparently nobody cared about that during development.
You're comparing the art(!) of two different games, that targeted two different sets of hardware while using the ideal hardware for one and not the other. Kind of a terrible example.
> You're comparing the art(!)
The art direction, modelling and animation work is mostly fine, the worse look results from the lack of dynamic lighting and ambient occlusion in the Oblivion Remaster when switching Lumen (UE5's realtime global illumination feature) to the lowest setting, this results in completely flat lighting for the vegetation but is needed to get an acceptable base frame rate (it doesn't solve the random stuttering though).
Basically, the best art will always look bad without good lighting (and even baked or faked ambient lighting like in Skyrim looks better than no ambient lighting at all.
Digital Foundry has an excellent video about the issues:
https://www.youtube.com/watch?v=p0rCA1vpgSw
TL;DR: the 'ideal hardware' for the Oblivion Remaster doesn't exist, even if you get the best gaming rig money can buy.
> …when switching Lumen (UE5's realtime global illumination feature) to the lowest setting, this results in completely flat lighting for the vegetation but is needed to get an acceptable base frame rate (it doesn't solve the random stuttering though).
This also happens to many other UE5 games like S.T.A.L.K.E.R. 2 where they try to push the graphics envelope with expensive techniques and most people without expensive hardware have to turn the settings way down (even use things like upscaling and framegen which further makes the experience a bit worse, at least when the starting point is very bad and you have to use them as a crutch), often making these modern games look worse than something a decade old.
Whatever UE5 is doing (or rather, how so many developers choose to use it) is a mistake now and might be less of a mistake in 5-10 years when the hardware advances further and becomes more accessible. Right now it feels like a ploy by the Big GPU to force people to upgrade to overpriced hardware if they want to enjoy any of these games; or rather, sillyness aside, is an attempt by studios to save resources by making the artists spend less time on faking and optimizing effects and detail that can just be brute forced by the engine.
In contrast, most big CryEngine and idTech games run great even on mid range hardware and still look great.
I haven't really played it myself but it sounds like from the video you posted the remasters a bit of an outlier in terms of bad performance. Again it seems like a bad example to pull from.
What timescale are we talking about? Many DOS stock and accounting applications were basically instantaneous. There are some animations on iPhone that you can't disable that take longer than a series of keyboard actions of a skilled operator in the 90s. Windows 2k with a stripped shell was way more responsive that today's systems as long as you didn't need to hit the harddrives.
The "instant" today is really laggy compared to what we had. Opening Slack takes 5s on a flagship phone and opening a channel which I just had open and should be fully cached takes another 2s. When you type in JIRA the text entry lags and all the text on the page blinks just a tiny bit (full redraw). When pages load on non-flagship phones (i.e. most of the world), they lag a lot, which I can see on monitoring dashboards.
I just clicked on the network icon next to the clock on a Windows 11 laptop. A gray box appeared immediately, about one second later all the buttons for wifi, bluetooth, etc appeared. Windows is full of situations like this, that require no network calls, but still take over one second to render.
It's strange, it visibly loading the buttons is indicative they use async technology that can use multithreaded CPUs effectively... but it's slower than the old synchronous UI stuff.
I'm sure it's significantly more expensive to render than Windows 3.11 - XP were - rounded corners and scalable vector graphics instead of bitmaps or whatever - but surely not that much? And the resulting graphics can be cached.
Windows 3.1 wasn't checking WiFi, Bluetooth, energy saving profile, night light setting, audio devices, current power status and battery level, audio devices, and more when clicking the non-existent icon on the non-existent taskbar. Windows XP didn't have this quick setting area at all. But I do recall having the volume slider take a second to render on XP from time to time, and that was only rendering a slider.
And FWIW this stuff is then cached. I hadn't clicked that setting area in a while (maybe the first time this boot?) and did get a brief gray box that then a second later populated with all the buttons and settings. Now every time I click it again it appears instantly.
Honestly it behaves like the interface is some Electron app that has to load the visual elements from a little internal webserver. That would be a very silly way to build an OS UI though, so I don't know what Microsoft is doing.
This one drives me nuts.
I have to stay connected to VPN to work, and if I see VPN is not connected I click to reconnect.
If the VPN button hasn't loaded you end up turning on Airplane mode. Ouch.
Yep. I suspect GP has just gotten used to this and it is the new “snappy” to them.
I see this all the time with people who have old computers.
“My computer is really fast. I have no need to upgrade”
I press cmd+tab and watch it take 5 seconds to switch to the next window.
That’s a real life interaction I had with my parents in the past month. People just don’t know what they’re missing out on if they aren’t using it daily.
Yeah, I play around with retro computers all the time. Even with IO devices that are unthinkably performant compared to storage hardware actually common at the time these machines are often dog slow. Just rendering JPEGs can be really slow.
Maybe if you're in a purely text console doing purely text things 100% in memory it can feel snappy. But the moment you do anything graphical or start working on large datasets its so incredibly slow.
I still remember trying to do photo editing on a Pentium II with a massive 64MB of RAM. Or trying to get decent resolutions scans off a scanner with a Pentium III and 128MB of RAM.
64MB is about the size of (a big) L3 cache. Today's L3 caches have a latency of 3-12ns and throughput measured in hundreds of gigabytes per second. And yet we can't manage to get responsive UIs because of tons of crud.
My modern machine running a modern OS is still way snappier while actually loading the machine and doing stuff. Sure, if I'm directly on a tty and just running vim on a small file its super fast. The same on my modern machine. Try doing a few things at once or handle some large dataset and see how well it goes.
My older computers would completely lock up when given a large task to do, often for many seconds. Scanning an image would take over the whole machine for like a minute per page! Applying a filter to an image would lock up the machine for several seconds even for a much smaller image a much simpler filter. The computer cannot even play mp3's and have a responsive word processor, if you really want to listen to music while writing a paper you better have it pass through the audio from a CD, much less think about streaming it from some remote location and have a whole encrypted TCP stream and decompression.
These days I can have lots of large tasks running at the same time and still have more responsiveness.
I have fun playing around with retro hardware and old applications, but "fast" and "responsive" are not adjectives I'd use to describe them.
A mix of both. There are large number of websites that are inefficiently written using up unnecessary amounts of resources. Semi-modern devices make up for that by just having a massive amount of computing power.
However, you also need to consider 2 additional factors. Macbooks and iPhones, even 4 year old ones, have usually been at the upper end of the scale for processing power. (When compared to the general mass-market of private end-consumer devices)
Try doing the same on a 4 year old 400 Euro laptop and it might look a bit different. Also consider your connection speed and latency. I usually have no loading issue either. But I have a 1G fiber connection. My parents don't.
I'd wager that a 2021 MacBook, like the one I have, is stronger than the laptop used by majority of people in the world.
Life on an entry or even mid level windows laptop is a very different world.
Yep. Developers make programs run well enough on the hardware sitting on our desks. So long as we’re well paid (and have decent computers ourselves), we have no idea what the average computing experience is for people still running 10yo computers which were slow even for the day. And that keeps the treadmill going. We make everyone need to upgrade every few years.
A few years ago I accidentally left my laptop at work on a Friday afternoon. Instead of going into the office, I pulled out a first generation raspberry pi and got everything set up on that. Needless to say, our nodejs app started pretty slowly. Not for any good reason - there were a couple modules which pulled in huge amounts of code which we didn’t use anyway. A couple hours work made the whole app start 5x faster and use half the ram. I would never have noticed that was a problem with my snappy desktop.
> Yep. Developers make programs run well enough on the hardware sitting on our desks. So long as we’re well paid (and have decent computers ourselves), we have no idea what the average computing experience is for people still running 10yo computers which were slow even for the day. And that keeps the treadmill going. We make everyone need to upgrade every few years.
Same thing happens with UI & Website design. When the designers and front-end devs all have top-spec MacBooks, with 4k+ displays, they design to look good in that environment.
Then you ship to the rest of the world which are still for the most part on 16:9 1920x1080 (or god forbid, 1366x768), low spec windows laptops and the UI looks like shit and is borderline unstable.
Now I don't necessarily think things should be designed for the lowest common denominator, but at the very least we should be taking into consideration that the majority of users probably don't have super high end machines or displays. Even today you can buy a brand new "budget" windows laptop that'll come with 8GB of RAM, and a tiny 1920x1080 display, with poor color reproduction and crazy low brightness - and that's what the majority of people are using, if they are using a computer at all and not a phone or tablet.
When I bought my current laptop, it was the cheapest one Costco had with 8 gigs of memory, which was at the time plenty for all but specialized uses. I've since upgraded it to 16, which feels like the current standard for that.
But...why? Why on earth do I need 16 gigs of memory for web browsing and basic application use? I'm not even playing games on this thing. But there was an immediate, massive spike in performance when I upgraded the memory. It's bizarre.
I've found so many performance issues at work by booting up a really old laptop or working remotely from another continent. It's pretty straightforward to simulate either poor network conditions or generally low performance hardware, but we just don't generally bother to chase down those issues.
Oh yeah, I didn't even touch on devs being used to working on super faster internet.
If you're on Mac, go install Network Link Conditioner and crank that download an upload speed way down. (Xcode > Open Developer Tools > More Developer Tools... > "Additional Tools for Xcode {Version}").
Spotify takes 7 seconds from clicking on its icon to playing a song on a 2024 top-of-the-range MacBook Pro. Navigating through albums saved on your computer can take several seconds. Double clicking on a song creates a 1/4sec pause.
This is absolutely remarkable inefficiency considering the application's core functionality (media players) was perfected a quarter century ago.
And on RhythmBox, on a 2017 laptop it works instantaneously. These big monetized apps were a huge mistake.
> These big monetized apps were a huge mistake.
It's electron. Electron was a mistake.
One example is Office. Microsoft is going back to preloading office during Windows Boot so that you don't notice it loading. With the average system spec 25 years ago it made sense to preload office. But today, what is Office doing that it needs to offload its startup to running at boot?
To note, people will have wildly different tolerance to delays and lag.
On the extreme, my retired parents don't feel the difference between 5s or 1s when loading a window or clicking somewhere. I offered a switch to a new laptop, cloning their data, and they didn't give a damn and just opened the laptop the closest to them.
Most people aren't that desensitized, but for some a 600ms delay is instantaneous when for other it's 500ms too slow.
I think it's a very theoretical argument: we could of course theoretically make everything even faster. It's nowhere near the most optimal use of the available hardware. All we'd have to give up is squishy hard-to-measure things like "feature sets" and "engineering velocity."
> All we'd have to give up is squishy hard-to-measure things like "feature sets" and "engineering velocity."
Would we? Really? I don't think giving up performance needs to be a compromise for the number of features or speed of delivering them.
People make higher-order abstractions for funzies?
we could of course theoretically make everything even faster. It's nowhere near the most optimal use of the available hardware. All we'd have to give up is squishy hard-to-measure things like "feature sets" and "engineering velocity."
Says who? Who are these experienced people that know how to write fast software that think it is such a huge sacrifice?
The reality is that people who say things like this don't actually know much about writing fast software because it really isn't that difficult. You just can't grab electron and the lastest javascript react framework craze.
These kinds of myths get perpetuated by people who repeat it without having experienced the side of just writing native software. I think mostly it is people rationalizing not learning C++ and sticking to javascript or python because that's what they learned first.
> These kinds of myths get perpetuated by people who repeat it without having experienced the side of just writing native software. I think mostly it is people rationalizing not learning assembly and sticking to C++ or PERL because that's what they learned first.
Why stop at C++? Is that what you happen to be comfortable with? Couldn't you create even faster software if you went down another level? Why don't you?
Couldn't you create even faster software if you went down another level? Why don't you?
No and if you understood what makes software fast you would know that. Most software is allocating memory inside hot loops and taking that out is extremely easy and can easily be a 7x speedup. Looping through contiguous memory instead of chasing pointers through heap allocated variables is another 25x - 100x speed improvement at least. This is all after switching from a scripting language, which is about a 100x in itself if the language is python.
It isn't about the instructions it is about memory allocation and prefetching.
Sorry but it is absolutely the case that there are optimizations available to someone working in assembly that are not available to someone working in C++.
You are probably a lazy or inexperienced engineer if you choose to work in C++.
In fact, there are optimizations available at the silicon level that are not available in assembly.
You are probably a lazy or inexperienced engineer if you choose to work in assembly.
I mean do you think JavaScript and Python aren't easier than C++? Then why do they exist?
It depends. Can Windows 3.11 be faster than Windows 11? Sure, maybe even in most cases: https://jmmv.dev/2023/06/fast-machines-slow-machines.html
Try forcefully closing VSCode and your browser, and see how long it takes to open them again. The same is true for most complex webpages/'webapps' (Slack, Discord, etc).
A lot of other native Mac stuff is also less than ideal. Terminal keeps getting stuck all the time, Mail app can take a while to render HTML emails, Xcode is Xcode, and so on.
I think it’s a little more nuanced than the broad takes make it seem.
One of the biggest performance issues I witness is that everyone assumes a super fast, always on WiFi/5G connection. Very little is cached locally on device so even if I want to do a very simple search through my email inbox I have to wait on network latency. Sometimes that’s great, often it really isn’t.
Same goes for many SPA web apps. It’s not that my phone can’t process the JS (even though there’s way too much of it), it’s poor caching strategies that mean I’m downloading and processing >1MB of JS way more often than I should be. Even on a super fast connection that delay is noticeable.
People conflat the insanity of running a network cable through every application with the poor performance of their computers.
Correction: devs have made the mistake of turning everything into remote calls, without having any understanding as to the performance implications of doing so.
Sonos’ app is a perfect example of this. The old app controlled everything locally, since the speakers set up their own wireless mesh network. This worked fantastically well. Someone at Sonos got the bright idea to completely rewrite the app such that it wasn’t even backwards-compatible with older hardware, and everything is now a remote calls. Changing volume? Phone —> Router —> WAN —> Cloud —> Router —> Speakers. Just… WHY. This failed so spectacularly that the CEO responsible stepped down / was forced out, and the new one claims that fixing the app is his top priority. We’ll see.
Presumably they wanted the telemetry. It's not clear that this was a dev-initiated switch.
Perhaps we can blame the 'statistical monetization' policies of adtech and then AI for all this -- i'm not entirely sold on developers.
What, after all, is the difference between an `/etc/hosts` set of loop'd records vs. an ISP's dns -- as far as the software goes?
> Presumably they wanted the telemetry
Why not log them to a file and cron a script to upload the data? Even if the feature request is nonsensical, you can architect a solution that respect the platform's constraints. It's kinda like when people drag in React and Next.js just to have a static website.
You’re right, and I shouldn’t necessarily blame devs for the idea, though I do blame their CTO for not standing up to it if nothing else.
Though it’s also unclear to me in this particular case why they couldn’t collect commands being issued, and then batch-send them hourly, daily, etc. instead of having each one route through the cloud.
We (probably) can guess the why - tracking and data opportunities which companies can eventually sell or utilize for profit is some way.
In Carmack's Lex Fridman interview he says he knows C++ devs who still insist on using some ancient version of MSVC because it's *so fast* compared to the latest, on the latest hardware.
2021 MacBook and 2020 iPhone are not "old". Still using 2018 iPhone. Used a 2021 Macbook until a month ago.
The Nintendo Switch on a chipset that was outdated a decade ago can run Tears of the Kingdom. It's not sensible that modern hardware is anything less than instant.
Online Word (or Microsoft 365, or whatever it is called) regularly took me 2 minutes to load a 120 page document. I'm being very literal here. You could see it load in real time approximately 1 page a second. And it wasn't a network issue, mind you. It was just that slow.
Worse, the document strained my laptop so much as I used it, I regularly had to reload the web-page.
A lot of nostalgia is at work here. Modern tech is amazing. If the old tools were actually better people would actually use them. Its not like you can't get them to work.
It vastly depends on what software you're forced to use.
Here's some software I use all the time, which feels horribly slow, even on a new laptop:
Slack.
Switching channels on slack, even when you've just switched so it's all cached, is painfully slow. I don't know if they build in a 200ms or so delay deliberately to mask when it's not cached, or whether it's some background rendering, or what it is, but it just feels sluggish.
Outlook
Opening an email gives a spinner before it's opened. Emails are about as lightweight as it gets, yet you get a spinner. It's "only" about 200ms, but that's still 200ms of waiting for an email to open. Plain text emails were faster 25 years ago. Adding a subset of HTML shouldn't have caused such a massive regression.
Teams
Switching tabs on teams has the same delayed feeling as Slack. Every iteraction feels like it's waiting 50-100ms before actioning. Clicking an empty calendar slot to book a new event gives 30-50ms of what I've mentally internalised as "Electron blank-screen" but there's probably a real name out there for basically waiting for a new dialog/screen to even have a chrome, let alone content. Creating a new calendar event should be instant, it should not take 300-500ms or so of waiting for the options to render.
These are basic "productivity" tools in which every single interaction feels like it's gated behind at least a 50ms debounce waiting period, with often extra waiting for content on top.
Is the root cause network hops or telemetry? Is it some corporate antivirus stealing the computer's soul?
Ultimately the root cause doesn't actually matter, because no matter the cause, it still feels like I'm wading through treacle trying to interact with my computer.
I don't get any kind of spinner on Outlook opening emails. Especially emails which are pure text or only lightly stylized open instantly. Even emails with calendar invites load really fast, I don't see any kind of spinner graphic at all.
Running latest Outlook on Windows 11, currently >1k emails in my Inbox folder, on an 11th gen i5, while also on a Teams call a ton of other things active on my machine.
This is also a machine with a lot of corporate security tools sapping a lot of cycles.
I’d take 50ms but in my experience it’s more like 250.
You're probably right, I'm likely massively underestimating the time, it's long enough to be noticable, but not so long that it feels instantly frustrating the first time, it just contributes to an overall sluggishness.
You are using a relatively high end computer and mobile device. Go and find a cheap laptop x86 and try doing the same. It will be extremely painful. Most of this is due to a combination of Windows 11 being absolute trash and JavaScript being used extensively in applications/websites. JavaScript is memory hog and can be extremely slow depending on how it is written (how you deal with loops massively affects the performance).
What is frustrating though that until relatively recently these devices would work fine with JS heavy apps and work really well with anything that is using a native toolkit.
I’m sure you know this, but a reminder that modern devices cache a hell of a lot, even when you “quit” such that subsequent launches are faster. Such is the benefit of more RAM.
I could compare Slack to, say, HexChat (or any other IRC client). And yeah, it’s an unfair comparison in many ways – Slack has far more capabilities. But from another perspective, how many of them do you immediately need at launch? Surely the video calling code could be delayed until after the main client is up, etc. (and maybe it is, in which case, oh dear).
A better example is Visual Studio [0], since it’s apples to apples.
[0]: https://youtu.be/MR4i3Ho9zZY
I have a 2019 Intel MacBook and Outlook takes about five seconds to load and constantly sputters
Apple unlike the other Silicon Valley giants has figured out that latency >>> throughput. Minimizing latency is much more important for making a program "feel" fast than maximizing latency. Some of the apps I interact with daily are Slack, Teams (ugh), Gmail, and YouTube and they are all slow as dogshit.
Lightroom non-user detected
They're comparing these applications to older applications that loaded instantly on much slower computers.
Both sides are right.
There is a ton of waste and bloat and inefficiency. But there's also a ton of stuff that genuinely does demand more memory and CPU. An incomplete list:
- Higher DPI displays use intrinsically more memory and CPU to paint and rasterize. My monitor's pixel array uses 4-6X more memory than my late 90s PC had in the entire machine.
- Better font rendering is the same.
- Today's UIs support Unicode, right to left text, accessibility features, different themes (dark/light at a minimum), dynamic scaling, animations, etc. A modern GUI engine is similar in difficulty to a modern game engine.
- Encryption everywhere means that protocols are no longer just opening a TCP connection but require negotiation of state and running ciphers.
- The Web is an incredibly rich presentation platform that comes with the overhead of an incredibly rich presentation platform. It's like PostScript meets a GUI library meets a small OS meets a document markup layer meets...
- The data sets we deal with today are often a lot larger.
- Some of what we've had to do to get 1000X performance itself demands more overhead: multiple cores, multiple threads, 64 bit addressing, sophisticated MMUs, multiple levels of cache, and memory layouts optimized for performance over compactness. Those older machines were single threaded machines with much more minimal OSes, memory managers, etc.
- More memory means more data structure overhead to manage that memory.
- Larger disks also demand larger structures to manage them, and modern filesystems have all kinds of useful features like journaling and snapshots that also add overhead.
... and so on.
Then you install Linux and get all that without the mess that is Win11. Inefficient software is inefficient software.
Yup, people run software on shitty computers and blame all the software.
The only slow (local) software I know is llvm and cpp compilers
Other are pretty fast
You have stories of people running 2021 MacBooks and complaining about performance. Those are not shitty computers.
This is something I've wished to eliminate too. Maybe we just cast the past 20 years as the "prototyping phase" of modern infrastructure.
It would be interesting to collect a roadmap for optimizing software at scale -- where is there low hanging fruit? What are the prime "offenders"?
Call it a power saving initiative and get environmentally-minded folks involved.
IMO, the prime offender is simply not understanding fundamentals. From simple things like “a network call is orders of magnitude slower than a local disk, which is orders of magnitude slower than RAM…” (and moreover, not understanding that EBS et al. are networked disks, albeit highly specialized and optimized), or doing insertions to a DB by looping over a list and writing each row individually.
I have struggled against this long enough that I don’t think there is an easy fix. My current company is the first I’ve been at that is taking it seriously, and that’s only because we had a spate of SEV0s. It’s still not easy, because a. I and the other technically-minded people have to find the problems, then figure out how to explain them b. At its heart, it’s a culture war. Properly normalizing your data model is harder than chucking everything into JSON, even if the former will save you headaches months down the road. Learning how to profile code (and fix the problems) may not be exactly hard, but it’s certainly harder than just adding more pods to your deployment.
The major slowdown of modern applications is network calls. Spend 50-500ms a pop for a few kilos of data. Many modern applications will spin up a half dozen blocking network calls casually.
Most of it was exchanged for abstractions which traded runtime speed for the ability to create apps quickly and cheaply.
The market mostly didn't want 50% faster code as much as it wanted an app that didn't exist before.
If I look at the apps I use on a day to day basis that are dog slow and should have been optimized (e.g. slack, jira), it's not really a lack of the industry's engineering capability to speed things up that was the core problem, it is just an instance the principal-agent problem - i.e. I'm not the one buying, I don't get to choose not to use it and dog-slow is just one of many the dimensions in which they're terrible.
I don’t think abundance vs speed is the right lens.
No user actually wants abundance. They use few programs and would benwfit if those programs were optimized.
Established apps could be optimized to the hilt.
But they seldom are.
> They use few programs
Yes but it's a different 'few programs' than 99% of all other users, so we're back to square one.
>No user actually wants abundance.
No, all users just want the few programs which they themselves need. The market is not one user, though. It's all of them.
But each vendor only develop a few software and generally supports only three platforms -/+ one. It’s so damning when I see projects reaching out for electron, when they only support macOS and Windows. And software like Slack has no excuse for being this slow on anything other than latest gen cpu and 1gb internet connection.
slack is shit along all sorts of dimensions (not just speed and bloat) because you're not the customer.
Users only want 5% of the features of the few programs they use. However everyone has a different list of features and a different list of programs. And so to get a market you need all the features on all the programs.
> Most of it was exchanged for abstractions which traded runtime speed for the ability to create apps quickly and cheaply.
Really? Because while abstractions like that exist (i.e. a webserver frameworks, reactivity, SQL and ORMs etc), I would argue that these aren't the abstractions that cause the most maintenance and performance issues. These are usually in the domain/business application and often not something that made anything quicker to develop or anything, but instead created by a developer that just couldn't help themselves
I think they’re referring to Electron.
Edit: and probably writing backends in Python or Ruby or JavaScript.
The backend programming language usually isn't a significant bottleneck; running dozens of database queries in sequence is the usual bottleneck, often compounded by inefficient queries, inappropriate indexing, and the like.
Yep. I’m a DBRE, and can confirm, it’s almost always the DB, with the explicit caveat that it’s also rarely the fault of the DB itself, but rather the fault of poor schema and query design.
Queries I can sometimes rewrite, and there’s nothing more satisfying than handing a team a 99% speed-up with a couple of lines of SQL. Sometimes I can’t, and it’s both painful and frustrating to explain that the reason the dead-simple single-table SELECT is slow is because they have accumulated billions of rows that are all bloated with JSON and low-cardinality strings, and short of at a minimum table partitioning (with concomitant query rewrites to include the partition key), there is nothing anyone can do. This has happened on giant instances, where I know the entire working set they’re dealing with is in memory. Computers are fast, but there is a limit.
The other way the DB gets blamed is row lock contention. That’s almost always due to someone opening a transaction (e.g. SELECT… FOR UPDATE) and then holding it needlessly while doing other stuff, but sometimes it’s due to the dev not being aware of the DB’s locking quirks, like MySQL’s use of gap locks if you don’t include a UNIQUE column as a search predicate. Read docs, people!
It seems to me most developers don't want to learn much about the database and would prefer to hide it behind the abstractions used by their language of choice. I can relate to a degree; I was particularly put off by SQL's syntax (and still dislike it), but eventually came to see the value of leaning into the database's capabilities.
> ORMs
Certain ORMs such as Rails's ActiveRecord are part of the problem because they create the illusion that local memory access and DB access are the same thing. This can lead to N+1 queries and similar issues. The same goes for frameworks that pretend that remote network calls are just a regular method access (thankfully, such frameworks seem to have become largely obsolete).
The fact that this was seen as an acceptable design decision both by the creators, and then taken up by the industry is in an of itself a sign of a serious issue.
I made a vendor run their buggy and slow software on a Sparc 20 against their strenuous complaints to just let them have an Ultra, but when they eventually did optimize their software to run efficiently (on the 20) it helped set the company up for success in the wider market. Optimization should be treated as competitive advantage, perhaps in some cases one of the most important.
> If dynamic array bounds checking cost 5% (narrator: it is far less than that)
It doesn’t work like that. If an image processing algorithm takes 2 instructions per pixel, adding a check to every access could 3-4x the cost.
This is why if you dictate bounds checking then the language becomes uncompetitive for certain tasks.
The vast majority of cases it doesn’t matter at all - much less than 5%. I think safe/unsafe or general/performance scopes are a good way to handle this.
It's not that simple either - normally, if you're doing some loops over a large array of pixels, say, to perform some operation to them, there will only be a couple of bounds checks before the loop starts, checking the starting and ending conditions of the loops, not re-doing the bounds check for every pixel.
So very rarely should it be anything like 3-4x the cost, though some complex indexing could cause it to happen, I suppose. I agree scopes are a decent way to handle it!
Your argument is exactly why we ended up with the abominations of C and C++ instead of the safety of Pascal, Modula-2, Ada, Oberon, etc. Programmers at the time didn't realize how little impact safety features like bounds checking have. The bounds only need to be checked once for a for loop, not on each iteration.
Don't forget the law of large numters. 5% performance hit on one system is one thing, 5% across almost all of the current computing landscape is still a pretty huge value.
It's about 5%.
Cost of cyberattacks globally[1]: O($trillions)
Cost of average data breach[2][3]: ~$4 million
Cost of lost developer productivity: unknown
We're really bad at measuring the secondary effects of our short-sightedness.
[1] https://iotsecurityfoundation.org/time-to-fix-our-digital-fo...
[2] https://www.internetsociety.org/resources/doc/2023/how-to-ta...
[3] https://www.ibm.com/reports/data-breach
But it's not free for the taking. The point is that we'd get more than that 5%'s worth in exchange. So sure, we'll get significant value "if software optimization was truly a priority", but we get even more value by making other things a priority.
Saying "if we did X we'd get a lot in return" is similar to the fallacy of inverting logical implication. The question isn't, will doing something have significant value, but rather, to get the most value, what is the thing we should do? The answer may well be not to make optimisation a priority even if optimisation has a lot of value.
depends on whether the fact that software can be finished will ever be accepted. If you're constantly redeveloping the same thing to "optimize and streamline my experience" (please don't) then yes, the advantage is dubious. But if not, then the saved value in operating costs keeps increasing as time goes on. It won't make much difference in my homelab, but at datacenter scale it does
Even the fact that value keeps increasing doesn't mean it's a good idea. It's a good idea if it keeps increasing more than other value. If a piece of software is more robust against attacks then the value in that also keeps increasing over time, possibly more than the cost in hardware. If a piece of software is easier to add features to, then that value also keeps increasing over time.
If what we're asking is whether value => X, i.e. to get the most value we should do X, you cannot answer that in the positive by proving X => value. If optimising something is worth a gazillion dollars, you still should not do it if doing something else is worth two gazillion dollars.
I agree with the sentiment and analysis that most humans prefer short term gains over long term ones. One correction to your example, though. Dynamic bounds checking does not solve security. And we do not know of a way to solve security. So, the gains are not as crisp as you are making them seem.
Bounds checking solves one tiny subset of security. There are hundreds of other subsets that we know how to solve. However these days the majority of the bad attacks are social and no technology is likely to solve them - as more than 10,000 years of history of the same attack has shown. Technology makes the attacks worse because they now scale, but social attacks have been happening for longer than recorded history (well there is every reason to believe that - there is unlikely to evidence going back that far).
> However these days the majority of the bad attacks are social
You're going to have to cite a source for that.
Bounds checking is one mechanism that addresses memory safety vulnerabilities. According to MSFT and CISA[1], nearly 70% of CVEs are due to memory safety problems.
You're saying that we shouldn't solve one (very large) part of the (very large) problem because there are other parts of the problem that the solution wouldn't address?
[1] https://www.cisa.gov/news-events/news/urgent-need-memory-saf...
You don't have to "solve" security in order to improve security hygiene by a factor of X, and thus risk of negative consequences by that same factor of X.
Most programming languages have array bounds checking now.
Most programming languages are written in C, which doesn't.
Fairly sure that was OP's point.
>Personally I think the 1000Xers kinda ruined things for the rest of us.
Reminds me of when NodeJS came out that bridged client and server side coding. And apparently their repos can be a bit of a security nightmare nowadays- so the minimalist languages with limited codebase do have their pros.
I don't think it's that deep. We are just stuck with browsers now, for better and worse. Everything else trails.
We're stuck with browsers now until the primary touch with the internet is assistants / agent UIs / chat consoles.
That could end up being Electron (VS Code), though that would be a bit sad.
I think it'd be pretty funny if to book travel in 2035 you need to use a travel agent that's objectively dumber than a human. We'd be stuck in the eighties again, but this time without each other to rely on.
Of course, that would be suicide for the industry. But I'm not sure investors see that.
I don't think we are gonna go there. Talking is cumbersome. There's a reason, besides social anxiety that people prefer to use self-checkout and electronically order fastfood. There are easier ways to do a lot of things than with words.
I'd bet on maybe ad hoc ai designed ui-s you click but have a voice search when you are confused about something.
Search is being replaced by LLM chat. Agent workflows are going to get us to a place where people can rally software to their own purposes. At that point, they don't have to interact with the web front end, they can interact with their own personal front-end that is able to navigate your backend.
Today a website is easier. But just like there's a very large percentage of people doing a great many things from their phone instead of tying themselves to a full-blown personal computer, there will be an increasing number of people who send their agents off to get things done. In that scenario, the user interface is further up the stack than a browser, if there's a browser as typically understood in the stack at all.
If you know what you want then not talking to a human is faster. However if you are not sure a human can figure out. I'm not sure I'd trust a voice assistant - the value in the human is an informed opinion which is hard to program, but it is easy to program a recommendation for whatever makes the most profit. Of course humans often don't have an informed opinion either, but at least sometimes they do, and they will also sometimes admit it when they don't.
> the value in the human is an informed opinion which is hard to program
I don't think I ever used a human for that. They are usually very uninformed about everything that's not their standard operational procedure or some current promotional materials.
20 years ago when I was at McDonalds there would be several customers per shift (so many 1 in 500?) who didn't know what they wanted and asked for a recommendation. Since I worked there I ate there often enough to know if the special was something I liked or not.
Bless your souls. I'm not saying it doesn't happen. I just personally had only bad experiences so I actively avoid human interactive input in my commercial activity.
The first reply is essentially right. This isn't what happened at all, just because C is still prevalent. All the inefficiency is everything down the stack, not in C.
I don't trust that shady-looking narrator. 5% of what exactly? Do you mean that testing for x >= start and < end is only 5% as expensive as assigning an int to array[x]?
Or would bounds checking in fact more than double the time to insert a bunch of ints separately into the array, testing where each one is being put? Or ... is there some gimmick to avoid all those individual checks, I don't know.
You only need to bounds check once before a for loop starts, not every iteration.
The problem is 1000xers are a rarity.
The software desktop users have to put up with is slow.
You can always install DOS as your daily driver and run 1980's software on any hardware from the past decade, and then tell me how that's slow.
1000x referred to the hardware capability, and that's not a rarity that is here.
The trouble is how software has since wasted a majority of that performance improvement.
Some of it has been quality of life improvements, leading nobody to want to use 1980s software or OS when newer versions are available.
But the lion's share of the performance benefit got chucked into the bin with poor design decisions, layers of abstractions, too many resources managed by too many different teams that never communicate making any software task have to knit together a zillion incompatible APIs, etc.
The sad thing is that even running DOS software in DOSBox (or in QEMU+FreeDOS), or Amiga software in UAE, is much faster than any native software I have run in many years on any modern systems. They also use more reasonable amounts of storage/RAM.
Animations is part of it of course. A lot of old software just updates the screen immediately, like in a single frame, instead of adding frustrating artificial delays to every interaction. Disabling animations in Android (an accessibility setting) makes it feel a lot faster for instance, but it does not magically fix all apps unfortunately.
Since 1980 maybe. But since 2005 it increased maybe 5x and even that's generous. And that's half of the time that passed and two decades.
https://youtu.be/m7PVZixO35c?si=px2QKP9-80hDV8Ui
2005 was Pentium 4 era.
For comparison: https://www.cpubenchmark.net/compare/1075vs5852/Intel-Pentiu...
That's about a 168x difference. That was from before Moores law started petering out.
For only a 5x speed difference you need to go back to the 4th or 5th generation Intel Core processors from about 10 years ago.
It is important to note that the speed figure above is computed by adding all of the cores together and that single core performance has not increased nearly as much. A lot of that difference is simply from comparing a single core processor with one that has 20 cores. Single core performance is only about 8 times faster than that ancient Pentium 4.
Clock speeds are 2000x higher than the 80s.
IPC could be 80x higher when taking into account SIMD and then you have to multiply by each core. Mainstream CPUs are more like 1 to 2 million times faster than what was there in the 80s.
You can get full refurbished office computers that are still in the million times faster range for a few hundred dollars.
The things you are describing don't have much to do with computers being slow and feeling slow, but they are happening anyway.
Scripting languages that are constantly allocating memory to any small operation and pointer chasing ever variable because the type is dynamic is part of the problem, then you have people writing extremely inefficient programs in an already terrible environment.
Most programs are written now in however way the person writing them wants to work, not how someone using it wishes they were written.
Most people have actually no concept of optimization or what runs faster than something else. The vast majority of programs are written by someone who gets it to work and thinks "this is how fast this program runs".
The idea that the same software can run faster is a niche thought process, not even everyone on hacker news thinks about software this way.
It's more like 100,000X.
Just the clockspeed increased 1000X, from 4 MHz to 4 GHz.
But then you have 10x more cores, 10x more powerful instructions (AVX), 10x more execution units per core.
And this is JavaScript. And you. are. going. to. LOVE IT!
I think on year 2001 GHz CPU should be a performance benchmark that every piece of basic non-high performance software should execute acceptably on.
This is kind of been a disappointment to me of AI when I've tried it. This has kind of been a disappointment to me of AI when I've tried it. Llm should be able to Port things. It should be able to rewrite things with the same interface. It should be able to translate from inefficient languages to more efficient ones.
It should even be able to optimize existing code bases automatically, or at least diagnose or point out poor algorithms, cache optimization, etc.
Heck I remember powerbuilder in the mid 90s running pretty well on 200 mhz CPUs. It doesn't even really interpreted stuff. It's just amazing how slow stuff is. Do rounded corners and CSS really consume that much CPU power?
My limited experience was trying to take the unix sed source code and have AI port it into a jvm language, and it could do the most basic operations, but utterly failed at even the intermediate sed capabilities. And then optimize? Nope
Of course there's no desire for something like that. Which really shows what the purpose of all this is. It's to kill jobs. It's not to make better software. And it means AI is going to produce a flood of bad software. Really bad software.
So I've worked for Google (and Facebook) and it really drives the point home of just how cheap hardware is and how not worth it optimizing code is most of the time.
More than a decade ago Google had to start managing their resource usage in data centers. Every project has a budget. CPU cores, hard disk space, flash storage, hard disk spindles, memory, etc. And these are generally convertible to each other so you can see the relative cost.
Fun fact: even though at the time flash storage was ~20x the cost of hard disk storage, it was often cheaper net because of the spindle bottleneck.
Anyway, all of these things can be turned into software engineer hours, often called "mili-SWEs" meaning a thousandth of the effort of 1 SWE for 1 year. So projects could save on hardware and hire more people or hire fewer people but get more hardware within their current budgets.
I don't remember the exact number of CPU cores amounted to a single SWE but IIRC it was in the thousands. So if you spend 1 SWE year working on optimization acrosss your project and you're not saving 5000 CPU cores, it's a net loss.
Some projects were incredibly large and used much more than that so optimization made sense. But so often it didn't, particularly when whatever code you wrote would probably get replaced at some point anyway.
The other side of this is that there is (IMHO) a general usability problem with the Web in that it simply shouldn't take the resources it does. If you know people who had to or still do data entry for their jobs, you'll know that the mouse is pretty inefficient. The old terminals from 30-40+ years ago that were text-based had some incredibly efficent interfaces at a tiny fraction of the resource usage.
I had expected that at some point the Web would be "solved" in the sense that there'd be a generally expected technology stack and we'd move on to other problems but it simply hasn't happened. There's still a "framework of the week" and we're still doing dumb things like reimplementing scroll bars in user code that don't work right with the mouse wheel.
I don't know how to solve that problem or even if it will ever be "solved".
Except you’re self selecting for a company that has high engineering costs, big fat margins to accommodate expenses like additional hardware, and lots of projects for engineers to work on.
The evaluation needs to happen in the margins, even if it saves pennies/year on the dollar, it’s best to have those engineers doing that than have them idling.
The problem is that almost no one is doing it, because the way we make these decisions has nothing to do with the economical calculus behind, most people just do “what Google does”, which explains a lot of the disfunction.
The title made me think Carmack was criticizing poorly optimized software and advocating for improving performance on old hardware.
When in fact, the tweet is absolutely not about either of the two. He's talking about a thought experiment where hardware stopped advancing and concludes with "Innovative new products would get much rarer without super cheap and scalable compute, of course".
It's related to a thread from yesterday, I'm guessing you haven't seen it:
https://news.ycombinator.com/item?id=43967208 https://threadreaderapp.com/thread/1922015999118680495.html
I think its a bad argument though. If we had to stop with the features for a little while and created some breathing room, the features would come roaring back. There'd be a downturn sure but not a continuous one.
> "Innovative new products would get much rarer without super cheap and scalable compute, of course".
Interesting conclusion—I'd argue we haven't seen much innovation since the smartphone (18 years ago now), and it's entirely because capital is relying on the advances of hardware to sell what is to consumers essentially the same product that they already have.
Of course, I can't read anything past the first tweet.
We have self driving cars, amazing advancement in computer graphics, dead reckoning of camera position from visual input...
In the meantime, hardware has had to go wide on threads as single core performance has not improved. You could argue that's been a software gain and a hardware failure.
> single core performance has not improved.
Single core performance has improved, but at a much slower rate than I experienced as a kid.
Over the last 10 years, we are something like 120% improvement in single core performance.
And, not for nothing, efficiency has become much more important. More CPU performance hasn't been a major driving factor vs having a laptop that runs for 12 hours. It's simply easier to add a bunch of cores and turn them all off (or slow them down) to gain power efficiency.
Not to say the performance story would be vastly different with more focus on performance over efficiency. But I'd say it does have an effect on design choices.
And I'd argue that we've seen tons of innovation in the past 18 years aside from just "the smartphone" but it's all too easy to take for granted and forget from our current perspective.
First up, the smartphone itself had to evolve a hell of a lot over 18 years or so. Go try to use an iPhone 1 and you'll quickly see all of the roadblocks and what we now consider poor design choices littered everywhere, vs improvements we've all taken for granted since then.
18 years ago was 2007? Then we didn't have (for better or for worse on all points):
* Video streaming services
* Decent video game market places or app stores. Maybe "Battle.net" with like 5 games, lol!
* VSCode-style IDEs (you really would not have appreciated Visual Studio or Eclipse of the time..)
* Mapping applications on a phone (there were some stand-alone solutions like Garmin and TomTom just getting off the ground)
* QR Codes (the standard did already exist, but mass adoption would get nowhere without being carried by the smartphone)
* Rideshare, food, or grocery delivery services (aside from taxis and whatever pizza or chinese places offered their own delivery)
* Voice-activated assistants (including Alexa and other standalone devices)
* EV Cars (that anyone wanted to buy) or partial autopilot features aside from 1970's cruise control
* Decent teleconferencing (Skype's featureset was damn limited at the time, and any expensive enterprise solutions were dead on the launchpad due to lack of network effects)
* Decent video displays (flatscreens were still busy trying to mature enough to push CRTs out of the market at this point)
* Color printers were far worse during this period than today, though that tech will never run out of room for improvement.
* Average US Internet speeds to the home were still ~1Mbps, with speeds to cellphone of 100kbps being quite luxurious. Average PCs had 2GB RAM and 50GB hard drive space.
* Naturally: the tech everyone loves to hate such as AI, Cryptocurrencies, social network platforms, "The cloud" and SaaS, JS Frameworks, Python (at least 3.0 and even realistically heavy adoption of 2.x), node.js, etc. Again "Is this a net benefit to humanity" and/or "does this get poorly or maliciously used a lot" doesn't speak to whether or not a given phenomena is innovative, and all of these objectively are.
> * Video streaming services
Netflix video streaming launched in 2007.
> * VSCode-style IDEs (you really would not have appreciated Visual Studio or Eclipse of the time..)
I used VS2005 a little bit in the past few years, and I was surprised to see that it contains most of the features that I want from an IDE. Honestly, I wouldn't mind working on a C# project in VS2005 - both C# 2.0 and VS2005 were complete enough that they'd only be a mild annoyance compared to something more modern.
> partial autopilot features aside from 1970's cruise control
Radar cruise control was a fairly common option on mid-range to high-end cars by 2007. It's still not standard in all cars today (even though it _is_ standard on multiple economy brands). Lane departure warning was also available in several cars. I will hand it to you that L2 ADAS didn't really exist the way it does today though.
I worked for a 3rd party food delivery service in the summer of 2007. Ordering was generally done by phone, then the office would text us (the drivers) order details for pickup & delivery. They provided GPS navigation devices, but they were stand-alone units that were slower & less accurate than modern ones, plus they charged a small fee for using it that came out of our pay.
most of that list is iteration, not innovation. like going from "crappy colour printer" to "not-so-crappy colour printer"
Your post seems entirely anachronistic.
2007 is the year we did get video streaming services: https://en.wikipedia.org/wiki/BBC_iPlayer
Steam was selling games, even third party ones, for years by 2007.
I'm not sure what a "VS-Code style IDE" is, but I absolutely did appreciate Visual Studio ( and VB6! ) prior to 2007.
2007 was in fact the peak of TomTom's profit, although GPS navigation isn't really the same as general purpose mapping application.
Grocery delivery was well established, Tesco were doing that in 1996. And the idea of takeaways not doing delivery is laughable, every establishment had their own delivery people.
Yes, there are some things on that list that didn't exist, but the top half of your list is dominated by things that were well established by 2007.
There has been a lot of innovation - but it is focused to some niche and so if you are not in a niche you don't see it and wouldn't care if you did. Most of the major things you need have already invented - I recall word processors as a kid, so they for sure date back to the 1970s - we still need word processors and there is a lot of polish that can be added, but all innovation is in niche things that the majority of us wouldn't have a use for if we knew about it.
Of course innovation is always in bits and spurts.
This is exactly the point. People ignore that "bloat" is not (just) "waste", it is developer productivity increase motivated by economics.
The ability to hire and have people be productive in a less complicated language expands the market for workers and lowers cost.
The world runs on the maximization of ( - entropy / $) and that's definitely not the same thing as minimizing compute power or bug count.
I heartily agree. It would be nice if we could extend the lifetime of hardware 5, 10 years past its, "planned obsolescence." This would divert a lot of e-waste, leave a lot of rare earth minerals in the ground, and might even significantly lower GHG emissions.
The market forces for producing software however... are not paying for such externalities. It's much cheaper to ship it sooner, test, and iterate than it is to plan and design for performance. Some organizations in the games industry have figured out a formula for having good performance and moving units. It's not spread evenly though.
In enterprise and consumer software there's not a lot of motivation to consider performance criteria in requirements: we tend to design for what users will tolerate and give ourselves as much wiggle room as possible... because these systems tend to be complex and we want to ship changes/features continually. Every change is a liability that can affect performance and user satisfaction. So we make sure we have enough room in our budget for an error rate.
Much different compared to designing and developing software behind closed doors until it's, "ready."
Well, yes. It's an economic problem (which is to say, it's a resource allocation problem). Do you have someone spend extra time optimising your software or do you have them produce more functionality. If the latter generates more cash then that's what you'll get them to do. If the former becomes important to your cashflow then you'll get them to do that.
I think you’re right in that it’s an economics problem, but you’re wrong about which one.
For me this is a clear case of negative externalities inflicted by software companies against the population at large.
Most software companies don’t care about optimization because they’re not paying the real costs on that energy, lost time or additional e-waste.
> Do you have someone spend extra time optimising your software or do you have them produce more functionality
Depends. In general, I'd rather have devs optimize the software rather than adding new features just for the sake of change.
I don't use most of the new features in macOS, Windows, or Android. I mostly want an efficient environment to run my apps and security improvements. I'm not that happy about many of the improvements in macOS (eg the settings app).
Same with design software. I don't use most of the new features introduced by Adobe. I'd be happy using Illustrator or Photoshop from 10 years ago. I want less bloat, not more.
I also do audio and music production. Here I do want new features because the workflow is still being improved but definitely not at the cost of efficiency.
Regarding code editors I'm happy with VSCode in terms of features. I don't need anything else. I do want better LSPs but these are not part of the editor core. I wish VSCode was faster and consumed less memory though.
It's the kind of economics that shifts the financial debt to accumulating waste, and technical debt, which is paid for by someone else. It's basically stealing. There are --of course-- many cases in which thorough optimizing doesn't make much sense, but the idea of just adding servers instead of rewriting is a sad state of affairs.
It doesn't seem like stealing to me? Highly optimised software generally takes more effort to create and maintain.
The tradeoff is that we get more software in general, and more features in that software, i.e. software developers are more productive.
I guess on some level we can feel that it's morally bad that adding more servers or using more memory on the client is cheaper than spending developer time but I'm not sure how you could shift that equilibrium without taking away people's freedom to choose how to build software?
I feel like the argument is similar to that of all corporate externality pushes.
For example "polluting the air/water, requiring end-users to fill landfills with packaging and planned obscolescence" allows a company to more cheaply offer more products to you as a consumer.. but now everyone collectively has to live in a more polluted world with climate change and wasted source material converted to expensive and/or dangerous landfills and environmental damage from fracking and strip mining.
But that's still not different from theft. A company that sells you things that "Fell off the back of a truck" is in a position to offer you lower costs and greater variety, as well. Aren't they?
Our shared resources need to be properly managed: neither siphoned wastefully nor ruined via polution. That proper management is a cost, and it either has to be borne by those using the resources and creating the waste, or it is theft of a shared resource and tragedy of the commons.
> It's basically stealing.
This is exactly right. Why should the company pay an extra $250k in salary to "optimize" when they can just offload that salary to their customers' devices instead? The extra couple of seconds, extra megabytes of bandwidth, and shittery of the whole ecosystem has been externalized to customers in search of ill-gotten profits.
It's like ignoring backwards compatibility. That is really cheap since all the cost is pushed to end-users (that have to relearn the UI) or second/third-party developers (that have to rewrite their client code to work with a new API). But it's OK since everyone is doing it and also without all those pointless rewrites many of us would not have a job.
> without all those pointless rewrites many of us would not have a job.
I hear arguments like this fairly often. I don't believe it's true.
Instead of having a job writing a pointless rewrite, you might have a job optimizing software. You might have a different career altogether. Having a job won't go away: what you do for your job will simply change.
Also offloaded to the miserable devs maintaining the system.
> It's basically stealing
This feels like hyperbole to me. Who is being stolen from here? Not the end user, they're getting the tradeoff of more features for a low price in exchange for less optimized software.
From what I’m seeing people do on their computers, it barely changed from what they’ve been doing on their pentium 4 one. But now, with Electron-based software and the generals state of Windows, you can’t recommend something older than 4 years. It’s hard to not see it as stealing when you have to buy a 1000+ laptop, when a 400 one could easily do the job if the software were a bit better.
Most people today could be using excel '98 and be no less productive.
In my SO's job (HR), it's basically Word, Excel and email. And nothing more than what was available around 2005 other than some convenient utilities.
It’s only a tradeoff for the user if the user find the added features useful.
Increasingly, this is not the case. My favorite example here is the Adobe Creative Suite, which for many users useful new features became far and few between some time ~15 years ago. For those users, all they got was a rather absurd degree of added bloat and slowness for essentially the same thing they were using in 2010. These users would’ve almost certainly been happier had 80-90% of the feature work done in that time instead been bug fixes and optimization.
would you spend 100 years writing the perfect editor optimizing every single function and continueously optimizing and when will it ever be complete? No you wouldn't. Do you use python or java or C? Obviously, that can be optimized if you wrote in assembly. Practice what you preach, otherwise you'd be stealing.
Not really stealing. You could off course build software that is more optimized and with the same features but at a higher cost. Would most buyers pay twice the price for a webb app that loads in 1 sec instead of 2? Probably not.
Try loading slack and youtube on a 4 year old laptop. It’s more in the 10s, and good luck if you only have 8GB of ram.
Efficiency is critical to my everyday life. For example, before I get up from my desk to grab a snack from the kitchen, I'll bring any trash/dishes with me to double the trip's benefits. I do this kind of thing often.
Optimizing software has a similar appeal. But when the problem is "spend hours of expensive engineering time optimizing the thing" vs "throw some more cheap RAM at it," the cheaper option will prevail. Sometimes, the problem is big enough that it's worth the optimization.
The market will decide which option is worth pursuing. If we get to a point where we've reached diminishing returns on throwing hardware at a problem, we'll optimize the software. Moore's Law may be slowing down, but evidently we haven't reached that point yet.
We've been able to run order matching engines for entire exchanges on a single thread for over a decade by this point.
I think this specific class of computational power - strictly serialized transaction processing - has not grown at the same rate as other metrics would suggest. Adding 31 additional cores doesn't make the order matching engine go any faster (it could only go slower).
If your product is handling fewer than several million transactions per second and you are finding yourself reaching for a cluster of machines, you need to back up like 15 steps and start over.
> We've been able to run order matching engines for entire exchanges on a single thread for over a decade by this point.
This is the bit that really gets me fired up. People (read: system “architects”) were so desperate to “prove their worth” and leave a mark that many of these systems have been over complicated, unleashing a litany of new issues. The original design would still satisfy 99% of use cases and these days, given local compute capacity, you could run an entire market on a single device.
You are only able to do that because you are doing simple processing on each transaction. If you had to do more complex processing on each transaction it wouldn't be possible to do that many. Though it is hard for me to imagine what more complex processing would be (I'm not in your domain)
The order matching engine is mostly about updating an in-memory order book representation.
It is rarely the case that high volume transaction processing facilities also need to deal with deeply complex transactions.
I can't think of many domains of business wherein each transaction is so compute intensive that waiting for I/O doesn't typically dominate.
HFT would love to do more complex calculations for some of their trades. They often make the compromise of using a faster algorithm that is known to be right only 60% of the time vs the better but slower algorithm that is right 90% of the time.
That is a different problem from yours though and so it has different considerations. In some areas I/O dominates, in some it does not.
In a perfect world, maximizing (EV/op) x (ops/sec) should be done for even user software. How many person-years of productivity are lost each year to people waiting for Windows or Office to start up, finish updating, etc?
I work in card payments transaction processing and IO dominates. You need to have big models and lots of data to authorize a transaction. And you need that data as fresh as possible and as close to your compute as possible... but you're always dominated by IO. Computing the authorization is super cheap.
Tends to scale vertically rather than horizontally. Give me massive caches and wide registers and I can keep them full. For now though a lot of stuff is run on commodity cloud hardware so... eh.
Why can you not match orders in parallel using logarithmic reduction, the same way you would sort in parallel? Is it that there is not enough other computation being done other than sorting by time and price?
I think it is the temporal aspect of order matching - for exchanges it is an inherently serial process.
"The world" runs on _features_ not elegant, fast, or bug free software. To the end user, there is no difference between a lack of a feature, and a bug. Nor is there any meaningful difference between software taking 5 minutes to complete something because of poor performance, compared to the feature not being there and the user having to spend 5 minutes completing the same task manually. It's "slow".
If you keep maximizing value for the end user, then you invariably create slow and buggy software. But also, if you ask the user whether they would want faster and less buggy software in exchange for fewer features, they - surprise - say no. And even more importantly: if you ask the buyer of software, which in the business world is rarely the end user, then they want features even more, and performance and elegance even less. Given the same feature set, a user/buyer would opt for the fastest/least buggy/most elegant software. But if it lacks any features - it loses. The reason to keep software fast and elegant is because it's the most likely path to be able to _keep_ adding features to it as to not be the less feature rich offering. People will describe the fast and elegant solution with great reviews, praising how good it feels to use. Which might lead people to think that it's an important aspect. But in the end - they wouldn't buy it at all if it didn't do what they wanted. They'd go for the slow frustrating buggy mess if it has the critical feature they need.
Almost all of my nontechnical friends and family members have at some point complained about bloated and overly complicated software that they are required to use.
Also remember that Microsoft at this point has to drag their users kicking and screaming into using the next Windows version. If users were let to decide for themselves, many would have never upgraded past Windows XP. All that despite all the pretty new features in the later versions.
I'm fully with you that businesses and investors want "features" for their own sake, but definitely not users.
Every software you use has more bloat than useful features? Probably not. And what's useless to one user might be useful to another.
Agree WRT the tradeoff between features and elegance.
Although, I do wonder if there’s an additional tradeoff here. Existing users, can apparently do what they need to do with the software, because they are already doing it. Adding a new feature might… allow them to get rid of some other software, or do something new (but, that something new must not be so earth shattering, because they didn’t seek out other software to do it, and they were getting by without it). Therefore, I speculate that existing users, if they really were introspective, would ask for those performance improvements first. And maybe a couple little enhancements.
Potential new users on the other hand, either haven’t heard of your software yet, or they need it to do something else before they find it useful. They are the ones that reasonably should be looking for new features.
So, in “features vs performance” decision is also a signal about where the developers’ priorities lay: adding new users or keeping old ones happy. So, it is basically unsurprising that:
* techies tend to prefer the latter—we’ve played this game before, and know we want to be the priority for the bulk of the time using the thing, not just while we’re being acquired.
* buggy slow featureful software dominates the field—this is produced by companies that are prioritizing growth first.
* history is littered with beautiful, elegant software that users miss dearly, but which didn’t catch on broadly enough to sustain the company.
However, the tradeoff is real in both directions; most people spend most of their time as users instead of potential users. I think this is probably a big force behind the general perception that software and computers are incredibly shit nowadays.
Perfectly put. People who try to argue that more time should be spent on making software perform better probably aren't thinking about who's going to pay for that.
For the home/office computer, the money spent on more RAM and a better CPU enables all software it runs to be shipped more cheaply and with more features.
No way.
You've got it totally backwards. Companies push features onto users who do not want them in order to make sales through forced upgrades because the old version is discontinued.
If people could, no one would ever upgrade anything anymore. Look at how hard MS has to work to force anyone to upgrade. I have never heard of anyone who wanted a new version of Windows, Office, Slack, Zoom, etc.
This is also why everything (like Photoshop) is being forced into the cloud. The vast majority of people don't want the new features that are being offered. Including buyers at businesses. So the answer to keep revenue up is to force people to buy regardless of what features are being offered or not.
> You've got it totally backwards. Companies push features onto users who do not want them in order to make sales through forced upgrades because the old version is discontinued.
I think this is more a consumer perspective than a B2B one. I'm thinking about the business case. I.e. businesses purchase software (or has bespoke software developed). Then they pay for fixes/features/improvements. There is often a direct communication between the buyer and the developer (whether it's off-the shelf, inhouse or made to spec). I'm in this business and the dialog is very short "great work adding feature A. We want feature B too now. And oh the users say the software is also a bit slow can you make it go faster? Me: do you want feature B or faster first? Them (always) oh feature B. That saves us man-weeks every month". Then that goes on for feature C, D, E, ...Z.
In this case, I don't know how frustrated the users are, because the customer is not the user - it's the users' managers.
In the consumer space, the user is usually the buyer. That's one huge difference. You can choose the software that frustrates you the least, perhaps the leanest one, and instead have to do a few manual steps (e.g. choose vscode over vs, which means less bloated software but also many fewer features).
Works withoout Javascript:
https://nitter.poast.org/ID_AA_Carmack/status/19221007713925...
Unfortunately, bloated software passes the costs to the customer and it's hard to evaluate the loss.
Except your browser taking 180% of available ram maybe.
By the way, the world could also have some bug free software, if anyone could afford to pay for it.
What cost? The hardware is dirt cheap. Programmers aren't cheap. The value of being able to use cheap software on cheap hardware is basically not having to spend a lot of time optimizing things. Time is the one thing that isn't cheap here. So there's a value in shipping something slightly sub optimal sooner rather than something better later.
> Except your browser taking 180% of available ram maybe.
For most business users, running the browser is pretty much the only job of the laptop. And using virtual memory for open tabs that aren't currently open is actually not that bad. There's no need to fit all your gazillion tabs into memory; only the ones you are looking at. Browsers are pretty good at that these days. The problem isn't that browsers aren't efficient but that we simply push them to the breaking content with content. Content creators simply expand their resource usage whenever browsers get optimized. The point of optimization is not saving cost on hardware but getting more out of the hardware.
The optimization topic triggers the OCD of a lot of people and sometimes those people do nice things. John Carmack built his career when Moore's law was still on display. Everything he did to get the most out of CPUs was super relevant and cool but it also dated in a matter of a few years. One moment we were running doom on simple 386 computers and the next we were running Quake and Unreal with shiny new Voodoo GPUs on a Pentium II pro. I actually had the Riva 128 as my first GPU, which was one of the first products that Nvidia shipped running Unreal and other cool stuff. And while CPUs have increased enormously in performance, GPUs have increased even more by some ridiculous factor. Nvidia has come a long way since then.
I'm not saying optimization is not important but I'm just saying that compute is a cheap commodity. I actually spend quite a bit of time optimizing stuff so I can appreciate what that feels like and how nice it is when you make something faster. And sometimes that can really make a big difference. But sometimes my time is better spent elsewhere as well.
> Time is the one thing that isn't cheap here.
Right, and that's true of end users as well. It's just not taken into account by most businesses.
I think your take is pretty reasonable, but I think most software is too far towards slow and bloated these days.
Browsers are pretty good, but developers create horribly slow and wasteful web apps. That's where the optimization should be done. And I don't mean they should make things as fast as possible, just test on an older machine that a big chunk of the population might still be using, and make it feel somewhat snappy.
The frustrating part is that most web apps aren't really doing anything that complicated, they're just built on layers of libraries that the developers don't understand very well. I don't really have a solution to any of this, I just wish developers cared a little bit more than they do.
> I just wish developers cared a little bit more than they do.
Ask the nice product owner to stop crushing me with their deadlines and I'll happily oblige.
> The hardware is dirt cheap.
Maybe to you.
Meanwhile plenty of people are living paycheck-to-paycheck and literally cannot afford a phone, let alone a new phone and computer every few years.
Your whole reply is focused at business level but not everybody can afford 32GB of RAM just to have a smooth experience on a web browser.
> The hardware is dirt cheap.
It's not, because you multiply that 100% extra CPU time by all of an application's users and only then you come to the real extra cost.
And if you want to pick on "application", think of the widely used libraries and how much any non optimization costs when they get into everything...
The world DOES run on older hardware.
How new do you think the CPU in your bank ATM or car's ECU is?
There's a decent chance something in the room you're in right now is running an 8051 core.
Some of it does.
The chips in everyones pockets do a lot of compute and are relatively new though.
Well I know the CPU in my laptop is already over 10 years old and still works good enough for everything I do.
My daily drivers at home are an i3-540 and and Athlon II X4. Every time something breaks down, I find it much cheaper to just buy a new part than to buy a whole new kit with motherboard/CPU/RAM.
I'm a sysadmin, so I only really need to log into other computers, but I can watch videos, browse the web, and do some programming on them just fine. Best ROI ever.
> I can watch videos
Can you watch H.265 videos? That's the one limitation I regularly hit on my computer (that I got for free from some company, is pretty old, but is otherwise good enough that I don't think I'll replace it until it breaks). I don't think I can play videos recorded on modern iPhones.
Yes, they play just fine with Gnome Videos or VLC. Both machines have a GeForce GT 710 on them.
Doom can run on Apple's Lightning to HDMI adapter.
A USB charger is more powerful than the Apollo Guidance Computer: https://web.archive.org/web/20240101203337/https://forresthe...
Sure, if you think the world consists of cash transactions and whatever a car needs to think about.
If we're talking numbers, there are many, many more embedded systems than general purpose computers. And these are mostly built on ancient process nodes compared to the cutting edge we have today; the shiny octa-cores on our phones are supported by a myriad of ancilliary chips that are definitely not cutting edge.
We aren't talking numbers, though. Who cares about embedded? I mean that literally. This is computation invisible by design. If that were sufficient we wouldn't have smartphones.
In a way, and for a long time, smartphones were/are defined as embedded devices.
I still don't see how one can classify a smartphone as a general-purpose computing device, even though they have enough computing power as a laptop.
Powerplants and planes still run on 80s hardware.
Modern planes do not, and many older planes have been retrofitted, in whole or in part, with more modern computers.
Some of the specific embedded systems (like the sensors that feed back into the main avionics systems) may still be using older CPUs if you squint, but it's more likely a modern version of those older designs.
Related: I wonder what cpu Artemis/Orion is using
IBM PowerPC 750X apparently, which was the CPU the Power Mac G3 used back in the day. Since it's going into space it'll be one of the fancy radiation-hardened versions which probably still costs more than your car though, and they run four of them in lockstep to guard against errors.
https://www.eetimes.com/comparing-tech-used-for-apollo-artem...
> fancy radiation-hardened versions
Ha! What's special about rad-hard chips is that they're old designs. You need big geometries to survive cosmic rays, and new chips all have tiny geometries.
So there are two solutions:
1. Find a warehouse full of 20-year old chips.
2. Build a fab to produce 20-year old designs.
Both approaches are used, and both approaches are expensive. (Approach 1 is expensive because as you eventually run out of chips they become very, very valuable and you end up having to build a fab anyway.)
There's more to it than just big geometries but that's a major part of the solution.
I'm not sure what artemis or orion are, but you can blame defense contractors for this. Nobody ever got fired for hiring IBM or Lockheed, even if they deliver unimpressive results at massive cost.
Put a 4 nm CPU into something that goes to space and see how long it would take to fail.
One of the tradeoffs of radiation hardening is increased transistor size.
Cost-wise it also makes sense - it’s a specialized, certified and low-volume part.
I don't disagree that the engineering can be justified. But you don't need custom hardware to achieve radiation hardening, much less hiring fucking IBM.
And to be clear, I love power chips. I remain very bullish about the architecture. But as a taxpayer reading this shit just pisses me off. Pork-fat designed to look pro-humanity.
> But you don't need custom hardware to achieve radiation hardening
Citation needed
> much less hiring fucking IBM
It's an IBM designed processor, what are you talking about?!
One of the things I think about sometimes, a specific example rather than a rebuttal to Carmack.
The Electron Application is somewhere between tolerated and reviled by consumers, often on grounds of performance, but it's probably the single innovation that made using my Linux laptop in the workplace tractable. And it is genuinely useful to, for example, drop into a MS Teams meeting without installing.
So, everyone laments that nothing is as tightly coded as Winamp anymore, without remembering the first three characters.
I work on a laptop from 2014. An i7 4xxx with 32 GB RAM and 3 TB SSD. It's OK for Rails and for Django, Vue, Slack, Firefox and Chrome. Browsers and interpreters got faster. Luckily there was pressure to optimize especially in browsers.
I was working as a janitor, moonlighting as an IT director, in 2010. Back then I told the business that laptops for the past five years (roughly since Nehalem) have plenty of horsepower to run spreadsheets (which is basically all they do) with two cores, 16 GB of RAM, and a 500GB SATA SSD. A couple of users in marketing did need something a little (not much) beefier. Saved a bunch of money by not buying the latest-and-greatest laptops.
I don't work there any more. Today I am convinced that's true today: those computers should still be great for spreadsheets. Their workflow hasn't seriously changed. It's the software that has. If they've continued with updates (can it even "run" MS Windows 10 or 11 today? No idea, I've since moved on to Linux) then there's a solid chance that the amount of bloat and especially move to online-only spreadsheets would tank their productivity.
Further, the internet at that place was terrible. The only offerings were ~16Mbit asynchronous DSL (for $300/mo just because it's a "business", when I could get the same speed for $80/mo at home), or Comcast cable 120Mbit for $500/mo. 120Mbit is barely enough to get by with an online-only spreadsheet, and 16Mbit definitely not. But worse: if internet goes down, then the business ceases to function.
This is the real theft that another commenter [0] mentioned that I wholeheartedly agree with. There's no reason whatsoever that a laptop running spreadsheets in an office environment should require internet to edit and update spreadsheets, or crazy amounts of compute/storage, or even huge amounts of bandwidth.
Computers today have zero excuse for terrible performance except only to offload costs onto customers - private persons and businesses alike.
[0]: https://news.ycombinator.com/item?id=43971960
I have been thinking about this a lot ever since I played a game called "Balatro". In this game nothing extraordinary happens in terms of computing - some computations get done, some images are shuffled around on the screen, the effects are sparse. The hardware requirements aren't much by modern standards, but still, this game could be ported 1:1 to a machine with Pentium II with a 3dfx graphics card. And yet it demands so much more - not a lot by today standards, but still. I am tempted to try to run it on a 2010 netbook to see if it even boots up.
It is made in lua using love2d. That helped the developers and comes with a cost in minimal requirements (even if they aren't much for a game released in 2024).
I'm not much into retro computing. But it amazes me what people are pulling out of a dated hardware.
Doom on the Amiga for example (many consider it the main factor for the Amiga demise). Optimization and 30 years and it finally arrived
Related: https://duskos.org/
Oh man, that's lovely. Awesome project!
My phone isn't getting slower, but rather the OS running on it becomes less efficient with every update. Shameful.
HN: Yeah! We should be go back to writing optimized code that fully uses the hardware capabilities!
Also HN: Check this new AI tool that consumes 1000x more energy to do the exact same thing we could already do, but worse and with no reproducibility
Google the goomba fallacy
The goal isn't optimized code, it is utility/value prop. The question then is how do we get the best utility/value given the resources we have. This question often leads to people believing optimization is the right path since it would use fewer resources and therefore the value prop would be higher. I believe they are both right and wrong. For me, almost universally, good optimization ends up simplifying things as it speeds things up. This 'secondary' benefit, to me, is actually the primary benefit. So when considering optimizations I'd argue that performance gains are a potential proxy for simplicity gains in many cases so putting a little more effort into that is almost always worth it. Just make sure you actually are simplifying though.
You're just replacing one favorite solution with another. Would users want simplicity at the cost of performance? Would they pay more for it? I don't think so.
You're right that the crux of it is that the only thing that matters is pure user value and that it comes in many forms. We're here because development cost and feature set provide the most obvious value.
Meanwhile on every programmer's 101 forum: "Space is cheap! Premature optimization is the root of all evil! Dev time > runtime!"
Exactly. Yes I understand the meaning behind it, but the line gets drummed into developers everywhere, the subtleties and real meaning are lost, and every optimisation- or efficiency-related question on Stack Overflow is met with cries of "You're doing it wrong! Don't ever think about optimising unless you're certain you have a problem!" This habit of pushing it to extremes, inevitably leads to devs not even thinking about making their software efficient. Especially when they develop on high-end hardware and don't test on anything slower.
Perhaps a classic case where a guideline, intended to help, ends up causing ill effects by being religiously stuck to at all times, instead of fully understanding its meaning and when to use it.
A simple example comes to mind, of a time I was talking to a junior developer who thought nothing of putting his SQL query inside a loop. He argued it didn't matter because he couldn't see how it would make any difference in that (admittedly simple) case, to run many queries instead of one. To me, it betrays a manner of thinking. It would never have occurred to me to write it the slower way, because the faster way is no more difficult or time-consuming to write. But no, they'll just point to the mantra of "premature optimisation" and keep doing it the slow way, including all the cases where it unequivocally does make a difference.
How much of the extra power has gone to graphics?
Most of it?
I wonder if anyone has calculated the additional planet heating generated by crappy e.g. JS apps or useless animations
Is there or could we make an iPhone-like that runs 100x slower than conventional phones but uses much less energy, so it powers itself on solar? It would be good for the environment and useful in survival situations.
Or could we make a phone that runs 100x slower but is much cheaper? If it also runs on solar it would be useful in third-world countries.
Processors are more than fast enough for most tasks nowadays; more speed is still useful, but I think improving price and power consumption is more important. Also cheaper E-ink displays, which are much better for your eyes, more visible outside, and use less power than LEDs.
We have much hardware on the secondary market (resale) that's only 2-3x slower than pristine new primary market devices. It is cheap, it is reuse, and it helps people save in a hyper-consumerist society. The common complaint is that it doesn't run bloated software anymore. And I don't think we can make non-bloated software for a variety of reasons.
As a video game developer, I can add some perspective (N=1 if you will). Most top-20 game franchises spawned years ago on much weaker hardware, but their current installments demand hardware not even a few years old (as recommended/intended way to play the game). This is due to hyper-bloating of software, and severe downskilling of game programmers in the industry to cut costs. The players don't often see all this, and they think the latest game is truly the greatest, and "makes use" of the hardware. But the truth is that aside from current-generation graphics, most games haven't evolved much in the last 10 years, and current-gen graphics arrived on PS4/Xbox One.
Ultimately, I don't know who or what is the culprit of all this. The market demands cheap software. Games used to cost up to $120 in the 90s, which is $250 today. A common price point for good quality games was $80, which is $170 today. But the gamers absolutely decry any game price increases beyond $60. So the industry has no option but to look at every cost saving, including passing the cost onto the buyer through hardware upgrades.
Ironically, upgrading a graphics card one generation (RTX 3070 -> 4070) costs about $300 if the old card is sold and $500 if it isn't. So gamers end up paying ~$400 for the latest games every few years and then rebel against paying $30 extra per game instead, which could very well be cheaper than the GPU upgrade (let alone other PC upgrades), and would allow companies to spend much more time on optimization. Well, assuming it wouldn't just go into the pockets of publishers (but that is a separate topic).
It's an example of Scott Alexander's Moloch where it's unclear who could end this race to the bottom. Maybe a culture shift could, we should perhaps become less consumerist and value older hardware more. But the issue of bad software has very deep roots. I think this is why Carmack, who has a practically perfect understanding of software in games, doesn't prescribe a solution.
One only needs to look at Horizon: Zero Dawn to note that the truth of this is deeply uneven across the games industry. World streaming architectures are incredible technical achievements. So are moddable engines. There are plenty of technical limits being pushed by devs, it's just not done at all levels.
You are right, but you picked a game by a studio known for its technical expertise, with plenty of points to prove about quality game development. I'd like them to be the future of this industry.
But right now, 8-9/10 game developers and publishers are deeply concerned with cash and rather unconcerned by technical excellence or games as a form of interactive art (where, once again, Guerrilla and many other Sony studios are).
I absolutely agree with what you are saying.
Yes, it's possible and very simple. Lower the frequency (dramatically lowers power usage), fewer cores, few threads, etc. The problem is, we don't know what we need. What if a great new apps comes out (think LLM); you'll be complaining your phone is too slow to run it.
> Or could we make a phone that runs 100x slower but is much cheaper? I
Probably not - a large part of the cost is equipment and R&D. It doesn't cost much more to build the most complex CPU vs a 6502 - there is only a tiny bit more silicon and chemicals. What is costly is the R&D behind the chip, and the R&D behind the machines that make the chips. If intel fired all their R&D engineers who were not focused on reducing manufacturing costs they could greatly reduce the price of their CPUs - until AMD released a next generation that is much better. (this is more or less what Henry Ford did with the model-T - he reduced costs every year until his competition adding features were enough better that he couldn't sell his cars.
Perfect parallel to the madness that is AI. With even modest sustainability incentives, the industry wouldn't have pulverized a trillion dollar on training models nobody uses to dominate the weekly attention fight and fundraising game.
Evidence: DeepSeek
1. Consumers are attracted to pretty UIs and lots of features, which pretty much drives inefficiency.
2. The consumers that have the money to buy software/pay for subscriptions have the newer hardware.
Sadly software optimization doesn't offer enough cost savings for most companies to address consumer frustration. However, for large AI workloads, even small CPU improvements yield significant financial benefits, making optimization highly worthwhile.
Obviously, the world ran before computers. The more interesting part of this is what would we lose if we knew there were no new computers, and while I'd like to believe the world would put its resources towards critical infrastructure and global logistics, we'd probably see the financial sector trying to buy out whatever they could, followed by any data center / cloud computing company trying to lock all of the best compute power in their own buildings.
I think optimizations only occur when the users need them. That is why there are so many tricks for game engine optimization and compiling speed optimization. And that is why MSFT could optimize the hell out of VSCode.
People simply do not care about the rest. So there will be as little money spent on optimization as possible.
The priority should be safety, not speed. I prefer an e.g. slower browser or OS that isn't ridden with exploits and attack vectors.
Of course that doesn't mean everything should be done in JS and Electron as there's a lot of drawbacks to that. There exists a reasonable middle ground where you get e.g. memory safety but don't operate on layers upon layers of heavy abstraction and overhead.
Unfortunately currently the priority is neither.
He mentions the rate of innovation would slow down which I agree with. But I think that even 5% slower innovation rate would delay the optimizations we can do or even figure out what we need to optimize through centuries of computer usage and in the end we'd be less efficient because we'd be slower at finding efficiencies. Low adoption rate of new efficiencies is worse than high adoption rate of old efficiencies is I guess how to phrase it.
If Cadence for example releases every feature 5 years later because they spend more time optimizing them, it's software after all, how much will that delay semiconductor innovations?
The idea of a hand me down computer made of brass and mahogany still sounds ridiculous because it is, but we're nearly there in terms of Moore's law. We have true 2nm within reach and then the 1nm process is basically the end of the journey. I expect 'audiophile grade' PCs in the 2030s and then PCs become works of art, furniture, investments, etc. because they have nowhere to go.
https://en.wikipedia.org/wiki/2_nm_process
https://en.wikipedia.org/wiki/International_Roadmap_for_Devi...
The increasing longevity of computers has been impressing me for about 10 years.
My current machine is 4 years old. It's absolutely fine for what I do. I only ever catch it "working" when I futz with 4k 360 degree video (about which: fine). It's a M1 Macbook Pro.
I traded its predecessor in to buy it, so I don't have that one anymore; it was a 2019 model. But the one before that, a 2015 13" Intel Macbook Pro, is still in use in the house as my wife's computer. Keyboard is mushy now, but it's fine. It'd probably run faster if my wife didn't keep fifty billion tabs open in Chrome, but that's none of my business. ;)
The one behind that one, purchased in 2012, is also still in use as a "media server" / ersatz SAN. It's a little creaky and is I'm sure technically a security risk given its age and lack of updates, but it RUNS just fine.
I already run on older hardware and most people can if they chose to - haven't bought a new computer since 2005. Perhaps the OS can adopt a "serverless" model where high computational tasks are offloaded as long as there is sufficient bandwidth.
This always saddens me. We could have things instant, simple, and compute & storage would be 100x more abundant in practical terms than it is today.
It's not even a trade off a lot of the time, simpler architectures perform better but are also vastly easier and cheaper to maintain.
We just lack expertise I think, and pass on cargo cult "best practices" much of the time.
Minimalism is excellent. As others have mentioned, using languages that are more memory safe (by assumption the language is wrote in such a way) may be worth the additional complexity cost.
But surely with burgeoning AI use efficiency savings are being gobbled up by the brute force nature of it.
Maybe model training and the likes of hugging face can avoid different groups trying to reinvent the same AI wheel using more resources than a cursory search of a resource.
I'm going to be pretty blunt. Carmack gets worshiped when he shouldn't be. He has several bad takes in terms of software. Further, he's frankly behind the times when it comes to the current state of the software ecosystem.
I get it, he's legendary for the work he did at id software. But this is the guy who only like 5 years ago was convinced that static analysis was actually a good thing for code.
He seems to have a perpetual view on the state of software. Interpreted stuff is slow, networks are slow, databases are slow. Everyone is working with Pentium 1s and 2MB of ram.
None of these are what he thinks they are. CPUs are wicked fast. Interpreted languages are now within a single digit multiple of natively compiled languages. Ram is cheap and plentiful. Databases and networks are insanely fast.
Good on him for sharing his takes, but really, he shouldn't be considered a "thought leader". I've noticed his takes have been outdated for over a decade.
I'm sure he's a nice guy, but I believe he's fallen into a trap that many older devs do. He's overestimating what the costs of things are because his mental model of computing is dated.
> Interpreted languages are now within a single digit multiple of natively compiled languages.
You have to be either clueless or delusional if you really believe that.
Z+6 months: Start porting everything to Collapse OS
https://collapseos.org/
Well obviously. And there would be no wars if everybody made peace a priority.
It's obvious for both cases where the real priorities of humanity lie.
Tell me about it. Web development has only become fun again at my place since upgrading from Intel Mac to M4 Mac.
Just throw in Slack chat, vscode editor in Electron, Next.js stack, 1-2 docker containers, one browser and you need top notch hardware to run it fluid (Apple Silicon is amazing though). I'm doing no fancy stuff.
Chat, editor in a browser and docker don't seem the most efficient thing if put all together.
100% agree with Carmack. There was a craft in writing software that I feel has been lost with access to inexpensive memory and compute. Programmers can be inefficient because they have all that extra headroom to do so which just contributes to the cycle of needing better hardware.
Software development has been commoditized and is directed by MBA's and others who don't see it as a craft. The need for fast project execution is above the craft of programming, hence, the code is bug-riddled and slow. There are some niche areas (vintage,pico-8, arduino...) where people can still practise the craft, but that's just a hobby now. When this topic comes up I always think about Tarkovsky's Andrei Rublev movie, the artist's struggle.
I'm already moving in this direction in my personal life. It's partly nostalgia but it's partly practical. It's just that work requires working with people who only use what hr and it hoists on them, then I need a separate machine for that.
Where lack of performance costs money, optimization is quite invested in. See PyTorch (Inductor CUDA graphs), Triton, FlashAttention, Jax, etc.
I've installed OSX Sequoia on 2015 iMacs with 8 gigs of ram and it runs great. More than great actually.
Linux on 10-15 year old laptops and it runs good. if you beef up RAM and SSD then actually really good.
So for everyday stuff we can and do run on older hardware.
Carmack is a very smart guy and I agree with the sentiment behind his post, but he's a software guy. Unfortunately for all of us hardware has bugs, sometimes bugs so bad that you need to drop 30-40% of your performance to mitigate them - see Spectre, Meltdown and friends.
I don't want the crap Intel has been producing for the last 20 years, I want the ARM, RiscV and AMD CPUs from 5 years in the future. I don't want a GPU by Nvidia that comes with buggy drivers and opaque firmware updates, I want the open source GPU that someone is bound to make in the next decade. I'm happy 10gb switches are becoming a thing in the home, I don't want the 100 mb hubs from the early 2000s.
It could also run on much less current hardware if efficiency was a priority. Then comes the AI bandwagon and everyone is buying loads of new equipment to keep up with the Jones.
The world could run on older hardware if rapid development did not also make money.
Rapid development is creating a race towards faster hardware.
We are squandering bandwidth similarly and that hasn’t increased as much as processing power.
My professor back in the day told me that "software is eating hardware". No matter how hardware gets advanced, software will utilize that advancement.
I'd much prefer Carmack to think about optimizing for energy consumption.
These two metrics often scale linearly.
This is a double edge sword problem, but I think what people are glazing over with the compute power topic is power efficiency. One thing I struggle with home labing old gaming equipment is the consideration to the power efficiency of new hardware. Hardly a valid comparison, but I can choose to recycle my Ryzen 1700x with a 2080ti for a media server that will probably consume a few hundred watts, or I can get a M1 that sips power. The double edge sword part is that Ryzen system becomes considerably more power efficient running proxmox or ubuntu server vs a windows client. We as a society choose our niche we want to leverage and it swings with and like economics, strapped for cash, choose to build more efficient code; no limits, buy the horsepower to meet the needs.
Imagine software engineering was like real engineering, where the engineers had licensing and faced fines or even prison for negligence. How much of the modern worlds software would be tolerated?
Very, very little.
If engineers handled the Citicorp center the same way software engineers did, the fix would have been to update the documentation in Confluence to not expose the building to winds and then later on shrug when it collapsed.
Yeah, having browsers the size and complexities of OSs is just one of many symptoms. I intimate at this concept in a grumbling, helpless manner somewhat chronically.
There's a lot today that wasn't possible yesterday, but it also sucks in ways that weren't possible then.
I foresee hostility for saying the following, but it really seems most people are unwilling to admit that most software (and even hardware) isn't necessarily made for the user or its express purpose anymore. To be perhaps a bit silly, I get the impression of many services as bait for telemetry and background fun.
While not an overly earnest example, looking at Android's Settings/System/Developer Options is pretty quick evidence that the user is involved but clearly not the main component in any respect. Even an objective look at Linux finds manifold layers of hacks and compensation for a world of hostile hardware and soft conflict. It often works exceedingly well, though as impractical as it may be to fantasize, imagine how badass it would be if everything was clean, open and honest. There's immense power, with lots of infirmities.
I've said that today is the golden age of the LLM in all its puerility. It'll get way better, yeah, but it'll get way worse too, in the ways that matter.[1]
Edit: 1. Assuming open source doesn't persevere
Really no notes on this. Carmack hit both sides of the coin:
- the way we do industry-scale computing right now tends to leave a lot of opportunity on the table because we decouple, interpret, and de-integrate where things would be faster and take less space if we coupled, compiled, and made monoliths
- we do things that way because it's easier to innovate, tweak, test, and pivot on decoupled systems that isolate the impact of change and give us ample signal about their internal state to debug and understand them
I mean, if you put win 95 on a period appropriate machine, you can do office work easily. All that is really driving computing power is the web and gaming. If we weren't doing either of those things as much, I bet we could all quite happily use machines from the 2000s era
Probably, but we'd be in a pretty terrible security place without modern hardware based cryptographic operations.
Let's keep the CPU efficiency golf to Zachtronics games, please.
I/O is almost always the main bottleneck. I swear to god 99% of developers out there only know how to measure cpu cycles of their code so that's the only thing they optimize for. Call me after you've seen your jobs on your k8s clusters get slow because all of your jobs are inefficiently using local disk and wasting cycles waiting in queue for reads/writes. Or your DB replication slows down to the point that you have to choose between breaking the mirror and stop making money.
And older hardware consumes more power. That's the main driving factor between server hardware upgrades because you can fit more compute into your datacenter.
I agree with Carmack's assessment here, but most people reading are taking the wrong message away with them.
There's servers and there's all of the rest of consumer hardware.
I need to buy a new phone every few years simply because the manufacturer refuses to update it. Or they add progressively more computationally expensive effects that makes my old hardware crawl. Or the software I use only supports 2 old version of macOS. Or Microsoft decides that your brand new cpu is no good for win 11 because it's lacking a TPM. Or god help you if you try to open our poorly optimized electron app on your 5 year old computer.
But Carmack is clearly talking about servers here. That is my problem -- the main audience is going to read this and think about personal compute.
All those situations you describe are also a choice made so that companies can make sales.
It shows up in different ways, and I agree that some of my examples are planned obsolescence.
I'm not so sure they're that different though. I do think that in the end most boil down to the same problem: no emphasis or care about performance.
Picking a programming paradigm that all but incentivizes N+1 selects is stupid. An N+1 select is not an I/O problem, it's a design problem.
> I/O is almost always the main bottleneck.
People say this all the time, and usually it's just an excuse not to optimize anything.
First, I/O can be optimized. It's very likely that most servers are either wasteful in the number of requests they make, or are shuffling more data around than necessary.
Beyond that though, adding slow logic on top of I/O latency only makes things worse.
Also, what does I/O being a bottleneck have to do with my browser consuming all of my RAM and using 120% of my CPU? Most people who say "I/O is the bottleneck" as a reason to not optimize only care about servers, and ignore the end users.
I/O _can_ be optimized. I know someone who had this as their fulltime job at Meta. Outside of that nobody is investing in it though.
I'm a platform engineer for a company with thousands of microservices. I'm not thinking on your desktop scale. Our jobs are all memory hogs and I/O bound messes. Across all of the hardware we're buying we're using maybe 10% CPU. Peers I talk to at other companies are almost universally in the same situation.
I'm not saying don't care about CPU efficiency, but I encounter dumb shit all the time like engineers asking us to run exotic new databases with bad licensing and no enterprise features just because it's 10% faster when we're nowhere near experiencing those kinds of efficiency problems. I almost never encounter engineers who truly understand or care about things like resource contention/utilization. Everything is still treated like an infinite pool with perfect 100% uptime, despite (at least) 20 years of the industry knowing better.
I'm looking at our Datadog stats right now. It is 64% cpu 36% IO.
That's great for you. How much infrastructure do you run?
Small Python backend deployment 30 machines 1 DB.
based